首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a specific and sensitive radioimmunoassay for rat apolipoprotein A-IV (apoA-IV). The protocol includes treatment of the samples for 1 h at 60 degrees C with 0.7% Tween 20. Under these conditions, linear logit-log plots have been obtained for apoA-IV in lymph and plasma lipoprotein fractions as well as for purified apoA-IV. The sensitivity of the assay is to 20 ng. Absolute mass values obtained with the assay were validated by comparison with values obtained with an independent method of colorimetric reading of apoA-IV separated by polyacrylamide gel electrophoresis from plasma high density lipoproteins. The concentration of apoA-IV in fasting plasma averaged 10.2 mg/dl and in the mesenteric duct lymph 15.8 and 12.6 mg/dl during the fasting and the fat absorption states, respectively.  相似文献   

2.
Recent studies showed lower apolipoprotein A-IV (apoA-IV) plasma concentrations in patients with coronary artery disease (CAD). The actual distribution of the antiatherogenic apoA-IV in human plasma, however, is discussed controversially and it was never investigated in CAD patients. We therefore developed a gentle technique to separate the various apoA-IV-containing plasma fractions. Using a combination of precipitation of all lipoproteins with 40% phosphotungstic acid and 4 M MgCl2, as well as immunoprecipitation of all apoA-I-containing particles with an anti-apoA-I antibody, we obtained three fractions of apoA-IV: lipid-free apoA-IV (about 4% of total apoA-IV), apoA-IV associated with apoA-I (LpA-I:A-IV, 12%), and apoA-I-unbound but lipoprotein-containing apoA-IV (LpA-IV, 84%). We compared these three apoA-IV fractions between 52 patients with a history of CAD and 52 age- and sex-matched healthy controls. Patients had significantly lower apoA-IV levels when compared to controls (10.28 +/- 3.67 mg/dl vs. 11.85 +/- 2.82 mg/dl, P = 0.029), but no major differences for the three plasma apoA-IV fractions. We conclude that our gentle separation method reveals a different distribution of apoA-IV than in many earlier studies. No major differences exist in the apoA-IV plasma distribution pattern between CAD patients and controls. Therefore, the antiatherogenic effect of apoA-IV has to be explained by other functional properties of apoA-IV (e.g., the antioxidative characteristics).  相似文献   

3.
Distribution of apolipoprotein A-IV in human plasma   总被引:9,自引:0,他引:9  
Human apoA-IV was purified from delipidated urinary chylomicrons. Monospecific antibodies were raised in rabbits and used to develop a double antibody radioimmunoassay (RIA). Displacement of 125I-labeled apoA-IV by plasma or purified chylomicron apoA-IV resulted in parallel displacement curves, indicating that apoA-IV from both sources share common antigenic determinants. The apoA-IV level in plasma from normal healthy fasting male subjects (n = 5) was 37.4 +/- 4.0 mg/dl, while fat-feeding increased the level to 49.1 +/- 7.9 mg/dl (P less than 0.05) at 4 hr. The apoA-IV level in plasma from abetalipoproteinemic fasting subjects was 13.7 +/- 3.1 mg/dl (n = 5). Plasma from a single fasting Tangier subject showed a reduced apoA-IV level of 21.1 mg/dl. The distribution of apoA-IV in fasting and postprandial plasma was determined by 6% agarose gel chromatography. Fifteen to 25% of plasma apoA-IV eluted in the region of plasma high density lipoprotein (HDL), with the remainder eluting in subsequent column fractions. In abetalipoproteinemic plasma this HDL fraction is reduced and lacks apoA-IV, suggesting that at least some of the apoA-IV on these particles is normally derived from triglyceride-rich lipoproteins. Lipemic plasma from a fat-fed subject showed a small rise (3%) in chylomicron-associated apoA-IV. Gel-filtered HDL and subsequent apoA-IV-containing fractions were subjected to 4-30% polyacrylamide gradient gel electrophoresis (4/30 GGE), and apoA-IV was identified by immunolocalization following transfer of proteins to nitrocellulose paper. In normal plasma apoA-IV was localized throughout all HDL fractions. In addition, normal plasma contained apoA-IV localized in a small particle (diameter 7.8-8.0 nm). This particle also contained apoA-I and lipid. A markedly elevated saturated to unsaturated cholesteryl ester ratio was present in gel-filtered plasma fractions containing small HDL, suggesting an intracellular origin of these particles. In abetalipoproteinemic plasma apoA-IV was absent from all HDL fractions except for the small HDL particles, suggesting that they are not derived from the surface of triglyceride-rich particles. All plasmas contained free apoA-IV. In contrast to gel-filtered plasma, lipoprotein subfractions of fasted normal plasma prepared in the ultracentrifuge primarily contained apoA-IV in the d greater than 1.26 g/ml fraction, suggesting an artifactual redistribution of the apolipoprotein during centrifugation. Overall, these data suggest that apoA-IV secretion into plasma is increased with fat feeding, and that apoA-IV normally exists as both a free apolipoprotein and in association with HDL particles.  相似文献   

4.
Plasma apolipoprotein A-IV (apoA-IV) levels are found elevated in hypertriglyceridemic patients. However, the relationship between plasma apoA-IV level and postprandial lipemia is not well known and remains to be elucidated. Thus, our objective was to study the relationship between plasma apoA-IV and postprandial TG after an oral fat load test (OFLT). Plasma apoA-IV was measured at fast and during an OFLT in 16 normotriglyceridemic, normoglucose-tolerant android obese subjects (BMI = 34.6 +/- 2.9 kg/m(2)) and 30 normal weight controls (BMI = 22.2 +/- 2.3 kg/m(2)). In spite of not statistically different fasting plasma TG levels in controls and obese patients, the former group showed an altered TG response after OFLT, featuring increased nonchylomicron TG area under the curve (AUC) compared with controls (516 +/- 138 vs. 426 +/- 119 mmol/l x min, P < 0.05). As compared to controls, obese patients showed increased apoA-IV levels both at fast (138.5 +/- 22.4 vs. 124.0 +/- 22.8 mg/l, P < 0.05) and during the OFLT (apoA-IV AUC: 79,833 +/- 14,281 vs. 68,176 +/- 17,463 mg/l x min, P < 0.05). Among the whole population studied, as among the control and obese subgroups, fasting plasma apoA-IV correlated significantly with AUC of plasma TG (r = 0.60, P < 0.001), AUC of chymomicron TG (r = 0.45, P < 0.01), and AUC of nonchylomicron TG (r = 0.62, P < 0.001). In the multivariate analysis, fasting apoA-IV level constituted an independent and highly significant determinant of AUC of plasma TG, AUC of chymomicron TG, AUC of nonchylomicron TG, and incremental AUC of plasma TG. In conclusion, we show a strong link between fasting apoA-IV and postprandial TG metabolism. Plasma fasting apoA-IV is shown to be a good marker of TG response after an OFLT, providing additional information on post-load TG response in conjunction with other known factors such as fasting TGs.  相似文献   

5.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Low levels of transgenic mouse apolipoprotein E (apoE) suppress atherosclerosis in apoE knockout (apoE-/-) mice without normalizing plasma cholesterol. To test whether this is due to facilitation of cholesterol efflux from the vessel wall, we produced apoA-I-/-/apoE-/- mice with or without the transgene. Even without apoA-I and HDL, apoA-I-/-/apoE-/- mice had the same amount of aorta cholesteryl ester as apoE-/- mice. Low apoE in the apoA-I-/-/apoE-/- transgenic mice reduced aortic lesions by 70% versus their apoA-I-/-/apoE-/- siblings. To define the free cholesterol (FC) efflux capacity of lipoproteins from the various genotypes, sera were assayed on macrophages expressing ATP-binding cassette transporter A1 (ABCA1). Surprisingly, ABCA1 FC efflux was twice as high to sera from the apoA-I-/-/apoE-/- or apoE-/- mice compared with wild-type mice, and this activity correlated with serum apoA-IV. Immunodepletion of apoA-IV from apoA-I-/-/apoE-/- serum abolished ABCA1 FC efflux, indicating that apoAI-V serves as a potent acceptor for FC efflux via ABCA1. With increasing apoE expression, apoA-IV and FC acceptor capacity decreased, indicating a reciprocal relationship between plasma apoE and apoA-IV. Low plasma apoE (1-3 x 10(-8) M) suppresses atherosclerosis by as yet undefined mechanisms, not dependent on the presence of apoA-I or HDL or an increased capacity of serum acceptors for FC efflux.  相似文献   

7.
Recently, we determined the apolipoprotein E (apoE) phenotype distribution in 2,000 randomly selected 35-year-old male individuals by slab gel isoelectric focusing of delipidated plasma samples, followed by immunoblotting using anti-apoE antiserum. These blots have been successfully re-used for immunovisualization of apoA-IV isoelectric focusing patterns. In a population sample of 1,393 individuals, four distinct apoA-IV isoforms were detected, encoded by the alleles A-IV*0, A-IV*1, A-IV*2, and A-IV*3 with gene frequencies of 0.002, 0.901, 0.079, and 0.018, respectively. The mean of plasma cholesterol, triglyceride, apoB and E levels did not differ significantly among the different apoA-IV phenotype groups. For these lipoprotein parameters, less than 0.1% of the total phenotypic variance could be accounted for by the APOA-IV gene locus. Our results did not show any effect of apoA-IV polymorphism on plasma apoA-I levels nor could we find any correlation between plasma levels of apoA-I and apoA-IV within the different apoA-IV phenotype groups. The plasma level of apoA-IV in subjects bearing the A-IV*3 allele is significantly lower than in subjects without the A-IV*3 allele (5 mg/dl versus 14 mg/dl). We therefore conclude that, in contrast to the apoE polymorphism, the polymorphism at the APOA-IV locus does not influence any of the levels of the lipoprotein parameters considered except apoA-IV.  相似文献   

8.
Metabolism of apolipoprotein A-IV in rat   总被引:1,自引:0,他引:1  
The metabolism of apolipoprotein A-IV (apo-IV) has been investigated in the rat. In this animal species, apoA-IV is a major protein constituent of plasma HDL and lymph chylomicron. The apolipoprotein is also present in the lipoprotein-deficient fraction (LDF) of plasma and lymph. In vivo studies with the radioiodinated protein showed the apoA-IV does not exchange freely between HDL and LDF and that LDF apoA-IV had a faster catabolism than HDL apoA-IV. ApoA-IV in chylomicrons is a direct precursor of apoA-IV in plasma HDL but not of that in LDF. On the other hand lymph LDF apoA-IV is an important precursor of plasma LDF apoA-IV. Transfer of apoA-IV from plasma to lymph is negligible, and since most of apoA-IV in lymph is present in LDF, we speculate that LDF apoA-IV is the major apoA-IV secretory product of the intestine. Studies aimed at identifying the site of catabolism of apoA-IV utilizing either radioiodinated or [14C]sucrose labelled apoA-IV, gave results consistent with the view that the liver plays a major role. When tested, human apoA-IV behaved in vivo in rat as the autologous protein. These findings, together with others previously published (Ghiselli, G. et al. (1987) J. Lipid Res. 27, 813-827), support the conclusion that the plasma metabolism of apoA-IV is remarkably similar in rat and human. We speculate that in mammals the rapid plasma catabolism of apoA-IV is mediated by an efficient uptake by the liver.  相似文献   

9.
Screening of matrix metalloproteinase (MMP)-14 substrates in human plasma using a proteomics approach previously identified apolipoprotein A-IV (apoA-IV) as a novel substrate for MMP-14. Here, we show that among the tested MMPs, purified apoA-IV is most susceptible to cleavage by MMP-7, and that apoA-IV in plasma can be cleaved more efficiently by MMP-7 than MMP-14. Purified recombinant apoA-IV (44-kDa) was cleaved by MMP-7 into several fragments of 41, 32, 29, 27, 24, 22 and 19 kDa. N-terminal sequencing of the fragments identified two internal cleavage sites for MMP-7 in the apoA-IV sequence, between Glu(185) and Leu(186), and between Glu(262) and Leu(263). The cleavage of lipid-bound apoA-IV by MMP-7 was less efficient than that of lipid-free apoA-IV. Further, MMP-7-mediated cleavage of apoA-IV resulted in a rapid loss of its intrinsic anti-oxidant activity. Based on the fact that apoA-IV plays important roles in lipid metabolism and possesses anti-oxidant activity, we suggest that cleavage of lipid-free apoA-IV by MMP-7 has pathological implications in the development of hyperlipidemia and atherosclerosis.  相似文献   

10.
Factors influencing the association of apoA-IV with high density lipoproteins (HDL) were investigated by employing a crossed immunoelectrophoresis assay to estimate the distribution of rat plasma apoA-IV between the lipoprotein-free and HDL fractions. Incubation of rat plasma at 37 degrees C resulted in the complete transfer of lipoprotein-free apoA-IV to HDL within 45 min. When plasma obtained from fat-fed rats was incubated at 37 degrees C in the presence of postheparin plasma as a source of lipolytic activity, there was a complete transfer of HDL apoA-IV to the lipoprotein-free fraction within 30 min. With extended incubation (120 min), lipoprotein-free apoA-IV began to transfer back to HDL. Similar patterns of apoA-IV redistribution were seen when plasma from fat-fed rats was incubated with postheparin heart perfusate or was perfused through a beating heart. Incubations conducted with plasma obtained from fasted rats showed similar but markedly attenuated apoA-IV responses. Similar observations were found in vivo following intravenous heparin administration. To determine whether the transfer of apolipoproteins from triglyceride-rich lipoproteins to HDL was partially responsible for the lipolysis-induced redistribution of apoA-IV, purified apoA-I, apoE, and C apolipoproteins were added to plasma from fasted rats. When added to plasma, all of the apolipoproteins tested displaced apoA-IV from HDL in a dose-dependent manner. Conversely, apolipoproteins were removed from HDL by adding Intralipid to plasma from fasted rats. With increasing concentrations of Intralipid, there was a progressive loss of HDL apoC-III and a progressive increase in HDL apoA-IV. Intravenous injection of a bolus of Intralipid to fasted rats resulted in a transient decrease of HDL apoC-III and concomitant increase in HDL apoA-IV. From these studies, we conclude that the binding of apoA-IV to HDL is favored under conditions that result in a relative deficit of HDL surface components, such as following cholesterol esterification by LCAT or transfer of apolipoproteins to nascent triglyceride-rich lipoproteins.  相似文献   

11.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

12.
Apolipoprotein A-IV (apoA-IV) has been postulated to be antiatherogenic. Transgenic APOA4/Apoe-/- mice are protected against atherosclerosis, with plasma apoA-IV displaying antioxidant activity in vitro. In humans, there is an inverse relationship between apoA-IV levels and risk of coronary heart disease (CHD). Furthermore, the APOA4 T347S rare allele has been associated with increased risk of CHD and reduced apoA-IV levels. Reduced total antioxidant status (TAOS) due to increased oxidative stress is implicated in the process of atherogenesis. Thus, this study aimed to examine the association between the APOA4 T347S variant and TAOS in diabetic patients with (n = 196) or without (n = 509) cardiovascular disease (CVD). A higher percentage of CVD patients were present in the lowest quartile of TAOS, compared with the rest (P = 0.04). Overall, there was no association between genotype and TAOS. However, in patients with CVD, homozygotes for the S347 allele had significantly lower TAOS compared with TT and TS subjects (31.2 +/- 9.89% and 42.5 +/- 13.04% TAOS, respectively; P = 0.0024), an effect that was not seen in the patients without CVD. This study offers direct support for an antioxidant capacity of apoA-IV, thus providing some explanation for the antiatherogenic role of apoA-IV and the higher CVD risk in S347 homozygotes.  相似文献   

13.
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.  相似文献   

14.
Summary. By using immunoblotting with antiserum specific to human plasma apolipoprotein A-IV (apoA-IV), a previously reported polymorphic plasma protein of dogs viz postalbumin-2 (Pa2) and one of horses viz serum protein 2 (SP2), were identified as apoA-IV of these species. This along with earlier published results implied that: (1) both dog and horse show a high degree of polymorphism at the APOA4 locus with three common alleles in each of the two species; and (2) apoA-IV phenotyping in these two species can be done by analysing plasma/serum samples by a simple method of two-dimensional electrophoresis, conducted under non-denaturing conditions, followed by general-protein staining of gels.  相似文献   

15.
By using immunoblotting with antiserum specific to human plasma apolipoprotein A-IV (apoA-IV), a previously reported polymorphic plasma protein of dogs viz postalbumin-2 (Pa2) and one of horses viz serum protein 2 (SP2), were identified as apoA-IV of these species. This along with earlier published results implied that: (1) both dog and horse show a high degree of polymorphism at the APOA4 locus with three common alleles in each of the two species; and (2) apoA-IV phenotyping in these two species can be done by analysing plasma/serum samples by a simple method of two-dimensional electrophoresis, conducted under non-denaturing conditions, followed by general-protein staining of gels.  相似文献   

16.
Increased plasma concentrations of apolipoprotein A-IV (apoA-IV) in chronic renal disease suggest a metabolic role of the kidney for this antiatherogenic protein. Therefore, we investigated patients with various forms of proteinuria and found increased serum concentrations of apoA-IV in 124 nephrotic patients compared with 274 controls (mean 21.9 +/- 9.6 vs. 14.4 +/- 4.0 mg/dl; P < 0.001). Decreasing creatinine clearance showed a strong association with increasing apoA-IV levels. However, serum albumin levels significantly modulated apoA-IV levels in patients with low creatinine clearance, resulting in lower levels of apoA-IV in patients with low compared with high albumin levels (21.4 +/- 8.6 vs. 29.2 +/- 8.4 mg/dl; P = 0.0007). Furthermore, we investigated urinary apoA-IV levels in an additional 66 patients with a wide variety of proteinuria and 30 controls. Especially patients with a tubular type of proteinuria had significantly higher amounts of apoA-IV in urine than those with a pure glomerular type of proteinuria and controls (median 45, 14, and 0.6 ng/mg creatinine, respectively). We confirmed these results in affected members of a family with Dent's disease, who are characterized by an inherited protein reabsorption defect of the proximal tubular system. In summary, our data demonstrate that the increase of apoA-IV caused by renal impairment is significantly modulated by low levels of serum albumin as a measure for the severity of the nephrotic syndrome. From this investigation of apoA-IV in urine as well as earlier immunohistochemical studies, we conclude that apoA-IV is filtered through the normal glomerulus and is subsequently reabsorbed mainly by proximal tubular cells.  相似文献   

17.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and associates with high density lipoproteins (HDL). We have characterized the distribution of GPI-PLD among lipoproteins in human plasma. Apolipoprotein (apo)-specific lipoproteins containing apoB (Lp[B]), apoA-I and A-II (Lp[A-I, A-II]), or apoA-I only (Lp[A-I]) were isolated using dextran sulfate and immunoaffinity chromatography. In six human plasma samples with HDL cholesterol ranging from 39 to 129 mg/dl, 79 +/- 14% (mean +/- SD) of the total plasma GPI-PLD activity was associated with Lp[A-I], 9 +/- 12% with Lp[A-I, A-II], and 1 +/- 1% with Lp[B]; and 11 +/- 10% was present in plasma devoid of these lipoproteins. Further characterization of the GPI-PLD-containing lipoproteins by gel-filtration chromatography and nondenaturing polyacrylamide and agarose gel electrophoresis revealed that these apoA-I-containing particles/complexes were small (8 nm) and migrated with pre-beta particles on agarose electrophoresis. Immunoprecipitation of GPI-PLD with a monoclonal antibody to GPI-PLD co-precipitated apoA-I and apoA-IV but little or no apoA-II, apoC-II, apoC-III, apoD, or apoE. In vitro, apoA-I but not apoA-IV or bovine serum albumin interacted directly with GPI-PLD, but did not stimulate GPI-PLD-mediated cleavage of a cell surface GPI-anchored protein. Thus, the majority of plasma GPI-PLD appears to be specifically associated with a small, discrete, and minor fraction of lipoproteins containing apoA-I and apoA-IV. -- Deeg, M. A., E. L. Bierman, and M. C. Cheung. GPI-specific phospholipase D associates with an apoA-I- and apoA-IV-containing complex. J. Lipid Res. 2001. 42: 442--451.  相似文献   

18.
19.
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.  相似文献   

20.
We have studied apolipoprotein synthesis, intracellular modification and secretion by primary adult rat hepatocyte cultures using continuous pulse or pulse chase labeling with [35S]methionine, immunoprecipitation and two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis. The flotation properties of the newly secreted apolipoproteins were studied by discontinuous density gradient ultracentrifugation and one- and two-dimensional polyacrylamide gel electrophoresis. These studies showed that rat hepatocyte apoE is modified intracellularly to produce minor isoproteins that differ in size and charge. One of these minor isoproteins represents a monosialated apoE form (apoE3s1). Similarly, apoCIII is modified intracellularly to produce a disialated apoCIII form (apoCIIIs2), whereas newly synthesized apoA-I and apoA-IV are not glycosylated and overlap on two-dimensional gels with the proapoA-I and the plasma apoA-IV form, respectively. Both unmodified and modified apolipoproteins are secreted into the medium. Separation of secreted apolipoproteins by density gradient ultracentrifugation has shown that 50% of apoE, 80% of apoA-I, and more than 90% of apoA-IV and apoCIII are secreted in a lipid-poor form, whereas apoB-100 and apoB-48 are 100% associated with lipids. ApoB-100 floats in the VLDL and IDL regions, whereas apoB-48 is found in all lipoprotein fractions. ApoE and small amounts of apoA-I, apoA-IV and apoCIII float in the HDL region. Small amounts of apoE and apoCIII are also found in the VLDL and IDL regions, and apoE in the LDL region. Ultracentrifugation of nascent lipoproteins in the presence of rat serum promoted flotation of apoA-I and apoA-IV in the HDL fraction and resulted in increased flotation and distribution of apoE and apoCs in VLDL, IDL and LDL regions. These observations are consistent with the hypothesis that intracellular assembly of lipoproteins involves apoB-48 and apoB-100 forms, whereas a large portion of apoA-I, apoCIII and apoA-IV can be secreted in a lipid-poor form, which associates extracellularly with preexisting lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号