首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lehmann KA  Bass BL 《Biochemistry》2000,39(42):12875-12884
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5' neighbor preference (A approximately U > C = G), but, unlike ADAR1, also has a 3' neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.  相似文献   

2.
Knight SW  Bass BL 《Molecular cell》2002,10(4):809-817
Adenosine deaminases that act on RNA (ADARs) are RNA-editing enzymes that deaminate adenosines to create inosines in double-stranded RNA (dsRNA). Here we demonstrate that ADARs are not required for RNA interference (RNAi) and that they do not antagonize the pathway to a detectable level when RNAi is initiated by injecting dsRNA. We find, however, that transgenes expressed in the somatic tissues of wild-type animals are silenced in strains with deletions in the two genes encoding ADARs, adr-1 and adr-2. Transgene-induced gene silencing in adr-1;adr-2 mutants depends on genes required for RNAi, suggesting that a dsRNA intermediate is involved. In wild-type animals we detect edited dsRNA corresponding to transgenes, and we propose that editing of this dsRNA prevents somatic transgenes from initiating RNAi in wild-type animals.  相似文献   

3.
RNA editing at adenosine 1012 (amber/W site) in the antigenomic RNA of hepatitis delta virus (HDV) allows two essential forms of the viral protein, hepatitis delta antigen (HDAg), to be synthesized from a single open reading frame. Editing at the amber/W site is thought to be catalyzed by one of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). In vitro, the enzymes ADAR1 and ADAR2 deaminate adenosines within many different sequences of base-paired RNA. Since promiscuous deamination could compromise the viability of HDV, we wondered if additional deamination events occurred within the highly base paired HDV RNA. By sequencing cDNAs derived from HDV RNA from transfected Huh-7 cells, we determined that the RNA was not extensively modified at other adenosines. Approximately 0.16 to 0.32 adenosines were modified per antigenome during 6 to 13 days posttransfection. Interestingly, all observed non-amber/W adenosine modifications, which occurred mostly at positions that are highly conserved among naturally occurring HDV isolates, were found in RNAs that were also modified at the amber/W site. Such coordinate modification likely limits potential deleterious effects of promiscuous editing. Neither viral replication nor HDAg was required for the highly specific editing observed in cells. However, HDAg was found to suppress editing at the amber/W site when expressed at levels similar to those found during HDV replication. These data suggest HDAg may regulate amber/W site editing during virus replication.  相似文献   

4.
Adenosine deaminases acting on RNA (ADARs) are best known for altering the coding sequences of mRNA through RNA editing, as in the GluR‐B Q/R site. ADARs have also been shown to affect RNA interference (RNAi) and microRNA processing by deamination of specific adenosines to inosine. Here, we show that ADAR proteins can affect RNA processing independently of their enzymatic activity. We show that ADAR2 can modulate the processing of mir‐376a2 independently of catalytic RNA editing activity. In addition, in a Drosophila assay for RNAi deaminase‐inactive ADAR1 inhibits RNAi through the siRNA pathway. These results imply that ADAR1 and ADAR2 have biological functions as RNA‐binding proteins that extend beyond editing per se and that even genomically encoded ADARs that are catalytically inactive may have such functions.  相似文献   

5.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   

6.
The family of adenosine deaminases acting on RNA (ADARs) targets adenosines in RNA that is mainly double stranded. Some substrates are promiscuously deaminated whereas others, such as the mammalian glutamate receptor B (gluR-B) pre-mRNA, are more selectively deaminated. Many DNA/RNA-base modification enzymes use a base flipping mechanism to be able to reach their target base and it is believed that ADARs function in a similar way. In this study we used molecular dynamics (MD) simulations to describe two sites on the gluR-B pre-mRNA, the selectively targeted R/G site and the nontargeted 46 site, in an attempt to explain the substrate specificity. We used regular MD and also a forced base flipping method with umbrella sampling to calculate the free energy of base opening. Spontaneous opening of the mismatched adenosine was observed for the R/G site but not for the 46 site.  相似文献   

7.
8.
9.
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing.  相似文献   

10.
11.
12.
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2.  相似文献   

13.
14.
RNA editing by adenosine deaminases generates RNA and protein diversity   总被引:8,自引:0,他引:8  
Schaub M  Keller W 《Biochimie》2002,84(8):791-803
  相似文献   

15.
16.
SINEs point to abundant editing in the human genome   总被引:1,自引:1,他引:0  
  相似文献   

17.
Adenosine deaminases acting on RNA (ADARs) are enzymes that convert adenosine (A) to inosine (I) in nuclear‐encoded RNAs and viral RNAs. The activity of ADARs has been demonstrated to be essential in mammals and serves to fine‐tune different proteins and modulate many molecular pathways. Recent findings have shown that ADAR activity is altered in many pathological tissues. Moreover, it has been shown that modulation of RNA editing is important for cell proliferation and migration, and has a protective effect on ischaemic insults. This review summarises available recent knowledge on A‐to‐I RNA editing and ADAR enzymes, with particular attention given to the emerging role played by these enzymes in cancer, some infectious diseases and immune‐mediated disorders.  相似文献   

18.
19.
Double-stranded RNA induces the homology-dependent degradation of cognate mRNA in the cytoplasm via RNA interference (RNAi) but also is a target for adenosine-to-inosine (A-to-I) RNA editing by adenosine deaminases acting on RNA (ADARs). An interaction between the RNAi and the RNA editing pathways in Caenorhabditis elegans has been suggested recently, but the precise mode of interaction remains to be established. In addition, it is unclear whether this interaction is possible in mammalian cells with their somewhat different RNAi pathways. Here we show that ADAR1 and ADAR2, but not ADAR3, avidly bind short interfering RNA (siRNA) without RNA editing. In particular, the cytoplasmic full-length isoform of ADAR1 has the highest affinity among known ADARs, with a subnanomolar dissociation constant. Gene silencing by siRNA is significantly more effective in mouse fibroblasts homozygous for an ADAR1 null mutation than in wild-type cells. In addition, suppression of RNAi effects are detected in fibroblast cells overexpressing functional ADAR1 but not when overexpressing mutant ADAR1 lacking double-stranded RNA-binding domains. These results identify ADAR1 as a cellular factor that limits the efficacy of siRNA in mammalian cells.  相似文献   

20.
Members of the family of adenosine deaminases acting on RNA (ADARs) can catalyze the hydrolytic deamination of adenosine to inosine and thereby change the sequence of specific mRNAs with highly double-stranded structures. The ADARs all contain one or more repeats of the double-stranded RNA binding motif (DRBM). By both in vitro and in vivo assays, we show that the DRBMs of rat ADAR2 are necessary and sufficient for dimerization of the enzyme. Bioluminescence resonance energy transfer (BRET) demonstrates that ADAR2 also exists as dimers in living mammalian cells and that mutation of DRBM1 lowers the dimerization affinity while mutation of DRBM2 does not. Nonetheless, the editing efficiency of the GluR2 Q/R site depends on a functional DRBM2. The ADAR2 DRBMs thus serve differential roles in RNA dimerization and GluR2 Q/R editing, and we propose a model for RNA editing that incorporates the new findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号