首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have developed an automated format for screening yeast two-hybrid libraries for protein-protein interactions. The format consists of a liquid array in which pooled library subsets of yeast, expressing up to 1000 different cDNAs, are mated to a yeast strain of the opposite mating type, expressing a protein of interest. Interactors are detected by a liquid assay for beta-galacsidase following prototrophic selection. The method is demonstrated by the detection of interactions between two encoded yeast RNA polymerase subunits in simulated libraries of varied complexity. To demonstrate its utility for large scale screening of complex cDNA libraries, two nuclear receptor ligand-binding domains were screened through two cDNA libraries arrayed in pooled subsets. Screening these libraries yielded clones which had previously been identified in traditional yeast two hybrid screens, as well as several new putative interacting proteins. The formatting of the cDNA library into pooled subsets lends itself to functional subtraction of the promiscuous positive class of interactor from the library. Also, the liquid arrayed format enables electronic handling of the data derived from interaction screening, which, together with the automated handling of samples, should promote large-scale proteome analysis.  相似文献   

2.
Yeast two-hybrid (Y2H) screening methods are an effective means for the detection of protein-protein interactions. Optimisation and automation has increased the throughput of the method to an extent that allows the systematic mapping of protein-protein interactions on a proteome-wide scale. Since two-hybrid screens fail to detect a great number of interactions, parallel high-throughput approaches are needed for proteome-wide interaction screens. In this review, we discuss and compare different approaches for adaptation of Y2H screening to high-throughput, the limits of the method and possible alternative approaches to complement the mapping of organism-wide protein-protein interactions.  相似文献   

3.
4.
Azama K  Abe S  Sugimoto H  Davies E 《Planta》2003,217(4):628-638
We measured fresh weight, dry weight, total protein, and the amounts of several individual proteins during endosperm development in three varieties of maize ( Zea mays L.): W64A wild-type (WT) and opaque-2 (o2), and sweet corn (SW). By 28 days after pollination (DAP), fresh weight was much higher in WT and SW than in o2, but o2 had a higher dry weight and thus a much lower water content. By 28 DAP, protein concentration [mg (g tissue(-1))] was highest in o2 and lowest in WT, while the protein content (microg seed(-1)) was lowest in o2. The storage proteins, alpha- and gamma-zeins, were low initially, but by 28 DAP they comprised over 50% of the total protein in WT and SW, but only about 30% in o2. In all varieties, the cytoskeleton proteins, actin, tubulin and eEF1alpha, sedimented with the protein bodies at 30 g to 27,000 g in tissue homogenized in cytoskeleton-stabilizing buffer. Other cytoskeleton-associated proteins increased during development, including UDP-glucose starch glucosyltransferase (UDP-GSGT, EC 2.4.1.11), sucrose synthase 1 (SuSy-1, EC 2.4.1.13) and fructose-1,6 bisphosphate aldolase (FBA, EC 4.1.2.13). At 28 DAP, these cytoskeleton-associated proteins combined make up 27% (WT), 23% (SW) and 33% (o2) of the total protein. These proteins are all rather high (5-11%) in lysine, and so they contribute about 75% (WT), 67% (o2), and 51% (SW) of the total endosperm lysine. We conclude that efforts to elevate the levels of these proteins could make a significant contribution to the nutritional value of corn.  相似文献   

5.
6.
Identification of a rice APETALA3 homologue by yeast two-hybrid screening   总被引:22,自引:0,他引:22  
  相似文献   

7.
8.
Tang K  Finley RL  Nie D  Honn KV 《Biochemistry》2000,39(12):3185-3191
The platelet isoform of 12-lipoxygenase (12-LOX) is expressed in a variety of human tumors. 12-LOX metabolizes arachidonic acid to 12(S)-hydroxyeicosateraenoic acid (12(S)-HETE), which induces a number of cellular responses associated with tumor progression and metastasis. Little is known about 12-LOX regulation and no direct regulators of 12-LOX activity have been identified. To identify potential regulators of 12-LOX, we isolated cDNAs encoding 12-LOX interacting proteins using the yeast two-hybrid system. We screened a yeast two-hybrid interaction library from human epidermoid carcinoma A431 cells and identified four cellular proteins that interact specifically with 12-LOX. We identified type II keratin 5, lamin A, the cytoplasmic domain of integrin beta4 subunit and a phosphoprotein C8FW as 12-LOX interacting proteins. Here, we demonstrated that keratin 5, a 58 kD protein required for formation of 8 nm intermediate filaments, binds to 12-LOX in human tumor cells and may contribute to the regulated trafficking of 12-LOX. We also showed that lamin A binds 12-LOX in human tumor cells. These proteins provide the first candidate regulators of 12-LOX.  相似文献   

9.
岳珊珊  夏来新 《遗传》2015,37(11):1160-1166
同源染色体联会时形成的联会复合体(Synaptonemal complex, SC)是由减数分裂前期Ⅰ多种蛋白质聚集而成的超级复合结构。生殖细胞特异性的核蛋白C(2)M(Crossover suppressor on 2 of Manheim)在染色体上高度聚集可以诱导SC的形成。本文采用酵母双杂交方法,利用C(2)M的诱饵表达载体筛选果蝇cDNA文库,共发现40个可能与C(2)M相互作用的蛋白,包括多种DNA及组蛋白结合蛋白、ATPase、转录调节因子。从筛选的结果中,选取wech和Psf1基因构建了转基因果蝇,并在生殖细胞中进行了基因沉默,结果显示联会复合体的消失受到延迟。上述结果表明Wech和Psf1蛋白可能与C(2)M形成复合物,共同参与联会复合体的形成或其稳定性的维持。  相似文献   

10.
神经元蛋白3.1(P311)是肺泡发育的上游调节因子。以pEGFP-P311重组质粒为模板,利用PCR方法扩增P311基因编码序列。通过Nde I和BamH I位点插入诱饵载体pGBKT7,构建重组诱饵载体pGBKT7-P311。重组体转化酵母菌AH109进行自激活和毒性检测,结果 DNA-BD-P311融合蛋白无单独激活报告基因作用,对酵母菌亦无毒性。以出生11 d小鼠肺组织为材料,提取总RNA。逆转录产生单链cDNA,通过长距离PCR进行扩增。扩增产物ds cDNA电泳后可见大小为0.2~3.0 kb间的弥散状分布条带,说明文库cDNA可满足筛选要求。诱饵载体pGBKT7-P311的构建及相应小鼠肺组织cDNA文库的建立,为进一步利用酵母双杂交技术探讨P311功能奠定了基础。  相似文献   

11.
Proteus mirabilis, a gram-negative bacterium associated with complicated urinary tract infections, produces a metalloenzyme urease which hydrolyzes urea to ammonia and carbon dioxide. The apourease is comprised of three structural subunits, UreA, UreB, and UreC, assembled as a homotrimer of individual UreABC heterotrimers (UreABC)(3). To become catalytically active, apourease acquires divalent nickel ions through a poorly understood process involving four accessory proteins, UreD, UreE, UreF, and UreG. While homologues of UreD, UreF, and UreG have been copurified with apourease, it remains unclear specifically how these polypeptides associate with the apourease or each other. To identify interactions among P. mirabilis accessory proteins, in vitro immunoprecipitation and in vivo yeast two-hybrid assays were employed. A complex containing accessory protein UreD and structural protein UreC was isolated by immunoprecipitation and characterized with immunoblots. This association occurs independently of coaccessory proteins UreE, UreF, and UreG and structural protein UreA. In a yeast two-hybrid screen, UreD was found to directly interact in vivo with coaccessory protein UreF. Unique homomultimeric interactions of UreD and UreF were also detected in vivo. To substantiate the study of urease proteins with a yeast two-hybrid assay, previously described UreE dimers and homomultimeric UreA interactions among apourease trimers were confirmed in vivo. Similarly, a known structural interaction involving UreA and UreC was also verified. This report suggests that in vivo, P. mirabilis UreD may be important for recruitment of UreF to the apourease and that crucial homomultimeric associations occur among these accessory proteins.  相似文献   

12.
Despite the wide acceptance of yeast two-hybrid (Y2H) system for protein-protein interaction analysis and discovery, conventional Y2H assays are not well suited for high-throughput screening of the protein interaction network (“interactome”) on a genomic scale due to several limitations, including labor-intensive agar plating and colony selection methods associated with the use of nutrient selection markers, complicated reporter analysis methods associated with the use of LacZ enzyme reporters, and incompatibility of the liquid handling robots. We recently reported a robust liquid culture Y2H system based on quantitative analysis of yeast-enhanced green fluorescent protein (yEGFP) reporters that greatly increased the analysis throughput and compatibility with liquid handling robots. To further advance its utility in high-throughput complementary DNA (cDNA) library screening, we report the development of a novel surface display Y2H (sdY2H) library screening system with uniquely integrated surface display hemagglutination (sdHA) antigen and yEGFP reporters. By introduction of a surface reporter sdHA into the yEGFP-based Y2H system, positive Y2H targets are quickly isolated from library cells by a simple magnetic separation without a large plating effort. Moreover, the simultaneous scoring of multiple reporters, including sdHA, yEGFP, and conventional nutrient markers, greatly increased the specificity of the Y2H assay. The feasibility of the sdY2H assay on large cDNA library screening was demonstrated by the successful recovery of positive P53/T interaction pairs at a target-to-background ratio of 1:1,000,000. Together with the massive parallel DNA sequencing technology, it may provide a powerful proteomic tool for high-throughput interactome mapping on a genomic scale.  相似文献   

13.
An important step in copper homeostasis is delivery of copper to a specific P-type ATPase in the Golgi apparatus (Ccc2 in yeast, ATP7A and ATP7B in humans) by a small copper chaperone protein (Atx1 in yeast, ATOX1 in humans). Atx1 and ATOX1 both contain an MXCXXC motif that is also present in Ccc2 (two motifs) and ATP7A/B (six motifs). Protein-protein interactions probably require coordination of one Cu(I) by cysteines from both MXCXXC motifs. We applied yeast two-hybrid analysis to screen systematically all possible interactions between MXCXXC-containing domains in these proteins. We demonstrate that ATOX1 and Atx1 preferentially interact with domains 2 and 4 of ATP7B and that Atx1 interacts with both Ccc2 domains. All combinations show a remarkable bell-shaped dependency on copper concentration that is maximal just below normal copper levels. Our results suggest that yeast two-hybrid analysis can be used to study the intracellular copper status of a cell.  相似文献   

14.
15.
The Listeria monocytogenes surface protein ActA is an important virulence factor required for listerial intracellular movement by inducing actin polymerization. The only host cell protein known that directly interacts with ActA is the phosphoprotein VASP, which binds to the central proline-rich repeat region of ActA. To identify additional ActA-binding proteins, we applied the yeast two-hybrid system to search for mouse proteins that interact with ActA. A mouse cDNA library was screened for ActA-interacting proteins (AIPs) using ActA from strain L. monocytogen es EGD as bait. Three different AIPs were identified, one of which was identical to the human protein LaXp180 (also called CC1). Binding of LaXp180 to ActA was also demonstrated in vitro using recombinant histidine-tagged LaXp180 and recombinant ActA. Using an anti-LaXp180 antibody and fluorescence microscopy, we showed that LaXp180 co-localizes with a subset of intracellular, ActA-expressing L. monocytogenes but was never detected on intracellularly growing but ActA-deficient mutants. Furthermore, LaXp180 binding to intracellular L. monocytogenes was asymmetrical and mutually exclusive with F-actin polymerization on the bacterial surface. LaXp180 is a putative binding partner of stathmin, a protein involved in signal transduction pathways and in the regulation of microtubule dynamics. Using immunofluorescence, we showed that stathmin co-localizes with intracellular ActA-expressing L. monocytogenes .  相似文献   

16.
17.
Ascidians are hermaphrodites releasing sperm and eggs nearly simultaneously, but many species are self sterile. We have previously reported that HrVC70 consisting of 12 EGF-like repeats is a major component of the vitelline coat, functioning as a self/nonself-recognizable sperm receptor during fertilization of the ascidian Halocynthia roretzi. Here, in order to identify the binding partner of HrVC70, we explored HrVC70-interacting proteins by yeast two-hybrid screening. HrVC70 is capable of interacting with HrVC70 precursor HrVC120 itself and also with three additional extracellular and/or transmembrane proteins, HrVLP-1, -2, and HrTTSP-1. Specific interaction of HrVC120, HrVLP-1, -2, and HrTTSP-1 with HrVC70 was confirmed by exchanging prey and bait, and also by a pulldown assay using the GST-fusion proteins. HrVLP-1 and -2 are proteins structurally related to HrVC120; both are expressed in the oocytes and may be novel components of the ascidian vitelline coat. HrTTSP-1 appears to be a member of the serine protease family with type II transmembrane topology. HrTTSP-1 is expressed in the testis and its gene product contains multiple conserved motifs known to be involved in protein-protein or protein-carbohydrate interactions. Close inspection revealed that the protease domain of HrTTSP-1 is considerably divergent, in particular around the region of the catalytic center Ser residue. Possible roles of these proteins in ascidian fertilization are also discussed.  相似文献   

18.
We have developed a high-throughput yeast two-hybrid screening system (HTP-YTH) that incorporates yeast gap-repair cloning, multiple positive ( ADE2, HIS3, lacZ) and negative ( URA3-based) selection schemes to reduce the incidence of negative and false positive clones, and automation of laboratory procedures to increase throughput. This HTP-YTH system has been applied to the study of protein-protein interactions that are involved in rice defense signal transduction pathways. More than 100 genes involved in plant defense responses were selected from DuPont's rice expressed sequence tag (EST) databases as baits for HTP-YTH screening. Results from YTH screening of eight of these rice genes are presented in this paper. Not only have we identified known protein-protein interactions, but we have also discovered novel interactions, which may ultimately reveal the regulatory network of host defense signal transduction pathways. We have demonstrated that our HTP-YTH method can be used to map protein-protein interaction networks and signal transduction pathways in any system. In combination with other approaches, such efficient YTH screens can help us systemically to study the functions of known and unknown genes in the genomics era.  相似文献   

19.
We have developed a technology for rapidly generating novel and fully human antibodies by simply using the antigen DNA. A human single‐chain variable fragment (scFv) antibody library was constructed in a yeast two‐hybrid vector with high complexity. After cloning cDNA encoding the mature sequence of human interleukin‐8 (hIL8) into the yeast two‐hybrid system vector, we have screened the human scFv antibody library and obtained three distinct scFv clones that could specifically bind to hIL8. One clone was chosen for further improvement by a novel affinity maturation process using the error‐prone PCR of the scFv sequence followed by additional rounds of yeast two‐hybrid screening. The scFv antibodies of both primary and affinity‐matured scFv clones were expressed in E. coli. All purified scFvs showed specific binding to hIL8 in reciprocal coimmunoprecipitation and ELISA assays. All scFvs, as well as a fully human IgG antibody converted from one of the scFv clones and expressed in the mammalian cells, were able to effectively inhibit hIL8 in neutrophil chemotaxis assays. The technology described can generate fully human antibodies with high efficiency and low cost.  相似文献   

20.
Since its inception, the yeast two-hybrid (Y2H) system has proven to be an efficient system to identify novel protein-protein interactions. However, Y2H screens are sometimes criticized for generating high rates of false-positives. Minimizing false-positive interactions is especially important in proteome wide high-throughput (HT) Y2H. Here, we summarize various approaches that reduce false-positives in HT-Y2H projects. We evaluated the potential of examining putative positives after removing the prey encoding plasmid by negative selection. We found that this method reliably identifies false-positives caused by spontaneous conversion of baits into auto-activators and provides significant time-savings in HT screens. In addition, we present a method to eliminate an important source of false-positives: contaminating prey plasmids. Y2H interactors can be wrongly identified due to the presence of two or more different plasmids in the cells of a single yeast colony. Of these independent plasmids, only one encodes a genuine interactor. Contaminating plasmids are eliminated by extended culture of yeast cells under positive selection for the interaction, allowing the identification of the true interaction partner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号