首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
BB creatine kinase and myogenic differentiation   总被引:1,自引:0,他引:1  
Abstract. Antisera specific for the B monomer of creatine kinase (B-CK), the M monomer of creatine kinase (M-CK), and muscle-specific myosin heavy chain (MHC) were used to investigate the biochemical characteristics of individual cells in primary myogenic cultures. Through the use of immunocytochemical techniques, in conjunction with 3H-thy-midine autoradiography, it was determined that (1) all of the terminally differentiated myoblasts contained B-CK in addition to M-CK and MHC, (2) none of the cycling cells contained M-CK or MHC, (3) a fraction (7.5%) of the cycling cells contained B-CK, and (4) the cycling, B-CK positive cells divided once, and only once, and produced two terminally differentiated myoblasts. These results indicate that myogenic precursors in vitro are a phenotypically heterogeneous cell population and that the appearance of B-CK in cycling myogenic cells is a biochemical manifestation of a distinct precursor compartment in the chicken skeletal myogenic lineage.  相似文献   

2.
3.
The rates of degradation of creatine kinase subunits, M-CK and B-CK subunits, were measured in cultured myogenic cells and in subcultured fibroblasts. In differentiated myogenic cells, the myotubes, both M-CK and B-CK subunits are synthesized. Their rates of degradation were compared. The M-CK subunits is slightly more stable and is degraded with an average apparent half-life of 75 h, whereas that of the B-CK subunit was shorter with 63 h. The turnover properties of M-CK subunit from soluble and of myofibril-bound MM-CK homodimeric creatine kinase isoenzyme isolated from breast muscle of young chickens were identical. The apparent half-life of the B-CK subunit was also determined in subcultured fibroblasts and 5-bromo-2'-deoxyuridine-treated cells, and found to be shorter than in myotubes (46 h and 37 h respectively). Similar observations were made for myosin heavy chain, actin and total acid-precipitable material. It appears therefore that proteins are in general degraded more slowly in differentiated myogenic cells. The differences in the stability of M-CK and B-CK subunits in myotubes probably do not reflect a major regulatory mechanism of the creatine kinase isoenzyme transition.  相似文献   

4.
The regulation of creatine kinase (CK) induction during muscle differentiation was analyzed with MM14 mouse myoblasts. These cells withdraw from the cell cycle and commit to terminal differentiation when fed with mitogen-depleted medium. Myoblasts contained trace amounts of an isozyme of brain CK (designated BB-CK), but differentiation was accompanied by the induction of two other isozymes of muscle and brain CKs (designated MM-CK and MB-CK). Increased CK activity was detectable within 6 h of mitogen removal, 3 h after the first cells committed to differentiation and 6 h before fusion began. By 48 h, MM-CK activity increased more than 400-fold, MB-CK activity increased more than 150-fold, and BB-CK activity increased more than 10-fold. Antibodies prepared against purified mouse MM-CK cross-reacted with muscle and brain CKs (designated M-CK and B-CK, respectively) from a variety of species and were used to demonstrate that the increase in enzymatic activity was paralleled by an increase in the protein itself. CK antibodies were also used to aid in identifying cDNA clones to M-CK. cDNA sequences which corresponded to protein-coding regions cross-hybridized with B-CK mRNA; however, a subclone containing the 3'-nontranslated region was unique and was used to quantitate M-CK mRNA levels during myoblast differentiation. M-CK mRNA was not detectable in myoblasts, but within 5 to 6 h of mitogen withdrawal (6 to 7 h before fusion begins) it accumulated to about 30 molecules per cell. By 24 h, myotubes contained approximately 1,100 molecules per nucleus of M-CK mRNA.  相似文献   

5.
Intracellular targeting of isoproteins in muscle cytoarchitecture   总被引:5,自引:1,他引:4       下载免费PDF全文
Part of the muscle creatine kinase (MM-CK) in skeletal muscle of chicken is localized in the M-band of myofibrils, while chicken heart cells containing myofibrils and BB-CK, but not expressing MM-CK, do not show this association. The specificity of the MM-CK interaction was tested using cultured chicken heart cells as "living test tubes" by microinjection of in vitro generated MM-CK and hybrid M-CK/B-CK mRNA with SP6 RNA polymerase. The resulting translation products were detected in injected cells with isoprotein-specific antibodies. M-CK molecules and translation products of chimeric cDNA molecules containing the head half of the B-CK and the tail half of the M-CK coding regions were localized in the M-band of the myofibrils. The tail, but not the head portion of M-CK is essential for the association of M-CK with the M-band of myofibrils. We conclude that gross biochemical properties do not always coincide with a molecule's specific functions like the participation in cell cytoarchitecture which may depend on molecular targeting even within the same cellular compartment.  相似文献   

6.
To study the physiological role of the creatine kinase/phosphocreatine (CK/PCr) system in cells and tissues with a high and fluctuating energy demand we have concentrated on the site-directed inactivation of the B- and M-CK genes encoding the cytosolic CK protein subunits. In our approach we used homologous recombination in mouse embryonic stem (ES) cells from strain 129/Sv. Using targeting constructs based on strain 129/Sv isogenic DNA we managed to ablate the essential exons of the B-CK and M-CK genes at reasonably high frequencies. ES clones with fully disrupted B-CK and two types of M-CK gene mutations, a null (M-CK) and leaky (M-CK1) mutation, were used to generate chimaeric mutant mice via injection in strain C57BL/6 derived blastocysts. Chimaeras with the B-CK null mutation have no overt abnormalities but failed to transmit the mutation to their offspring. For the M-CK and M-CK1 mutations successful transmission was achieved and heterozygous and homozygous mutant mice were bred. Animals deficient in MM-CK are phenotypically normal but lack muscular burst activity. Fluxes through the CK reaction in skeletal muscle are highly impaired and fast fibres show adaptation in cellular architecture and storage of glycogen. Mice homozygous for the leaky M-CK allele, which have 3-fold reduced MM-CK activity, show normal fast fibres but CK fluxes and burst activity are still not restored to wildtype levels.  相似文献   

7.
Cytosolic creatine kinase isoenzymes MM, MB, and BB are assembled from M or B subunits which occur in different relative amounts in specific tissues. The accumulation of mRNAs encoding the M and B subunits was measured during myogenesis in culture. The relative concentration of the two mRNAs was determined by hybridization with a M-CK cDNA probe isolated previously and a B-CK cDNA probe, the cloning and characterization of which is reported here. The B-CK cDNA hybridizes specifically to a 1.6-kb mRNA found in brain and gizzard but not in adult skeletal muscle tissue. The M-CK cDNA hybridizes to a smaller mRNA 1.4-kb long which is specific to skeletal muscle. In culture, the B-CK mRNA is transiently induced and then declines to a low but detectable level.  相似文献   

8.
A competition e.l.i.s.a. (enzyme-linked immunosorbent assay) is described that enables direct measurement of the muscle-specific polypeptide of chick creatine kinase (M-CK) in extracts of differentiating muscle-cell cultures and in blood plasma samples, even in the presence of embryonic, or brain-type, creatine kinase. The characteristics of the assay can be considerably improved by the use of a monoclonal antibody, CK-ART, instead of rabbit antisera, and we offer an explanation for this in terms of heterogeneity of antibody affinities in polyclonal antisera. In addition to native enzyme, the assay will measure creatine kinase unfolded and inactivated by 8 M-urea treatment. During chick muscle differentiation in vitro, M-CK increased from 7.5% of the total creatine kinase at 24h to 76.0% at 143h, in good agreement with isoenzyme separation data. As a percentage of the total cell protein, M-CK increased by 156-340-fold over the same period and constituted 0.38-0.56% of the total protein in late cultures. E.l.i.s.a. measurements on 17-20-day embryonic thigh-muscle extracts, which contain almost exclusively M-CK, agree well with enzyme activity and radioimmunoassay. M-CK constituted 0.7-1.6% of the total protein in 17-19-day embryonic thigh muscle. Plasma M-CK concentrations in normal 2-8-week-old chickens were found to be in the range 0.5-0.9 micrograms/ml. Plasma concentrations of 32-56 micrograms/ml were found in 8-week-old dystrophic chickens by both e.l.i.s.a. and enzyme-activity measurements. The results suggest that inactive or unfolded forms of M-CK do not normally exist, in any significant amounts, in cell and tissue extracts or in freshly prepared samples of plasma.  相似文献   

9.
Two isozymes of creatine kinase have been purified differentially from mitochondrial and cytoplasmic subfractions of intestinal epithelial cells. These intestinal epithelial cell creatine kinases were indistinguishable from the cytoplasmic (B-CK) and mitochondrial (Mi-CK) creatine kinase isozymes of brain when compared by SDS-PAGE, cellulose polyacetate electrophoresis, and peptide mapping. In intestinal epithelial cells, immunolocalization of the Mi-CK isozyme indicates that it is associated with long, thin mitochondria, which are excluded from the brush border at the apical end of each cell. In contrast, immunolocalization of the B-CK isozyme indicates that it is concentrated distinctly in the brush border terminal web domain. Although absent from the microvilli, B-CK also is distributed diffusely throughout the cytoplasm. Terminal web localization of B-CK was maintained in glycerol-permeabilized cells and in isolated brush borders, indicating that B-CK binds to the brush border structure. The abundance and localization of the mitochondrial and cytoplasmic creatine kinase isozymes suggest that they are part of a system that temporally and/or spatially buffers dynamic energy requirements of intestinal epithelial cells.  相似文献   

10.
Liu Z  Kim S  Kucuktas H  Karsi A 《Gene》2001,275(2):207-215
In vertebrates, the creatine kinase (CK) family consists of two cytosolic and two mitochondrial isoforms. The two cytosolic isoforms are the muscle type (M-CK) and the brain type (B-CK). Here we report multiple CK isoenzymes in the diploid channel catfish (Ictalurus punctatus) with one unusual cathodic isoform that was previously found only in pathological situations in human. The cathodic CK isoform existed only in the channel catfish stomach, ovary, and spleen, but not in any other species analyzed such as tilapia, smallmouth bass, chicken, or rat. Two genes encode the multiple forms of the channel catfish M-CK cDNAs. M-CK1 has three alleles, M-CK1.1, M-CK1.2, and M-CK1.3, while M-CK2 has just one allele as determined by analysis of 17 cDNA clones and by allele-specific PCR. M-CK1 encodes a protein of 381 amino acids and the M-CK2 cDNA encodes a protein of 380 amino acids. The two cDNAs shared an 86% identity and both have the nine diagnostic boxes for cytosolic CKs and thus are of cytosolic origin. The M-CK1 gene was isolated, sequenced, and characterized and its promoter should be useful for transgenic research for muscle-specific expression.  相似文献   

11.
Several enzymes that occur in multimolecular forms undergo transitions during myogenesis. Studies of such developmentally regulated isozymes (e.g. creatine kinase) indicate that muscle cells, cultured in the absence of neural tissue never develop fully mature isozyme patterns, but continue to express large amounts of 'housekeeping' isozymes that are characteristically present in fetal muscle. We studied two developmentally controlled isozymes, creatine kinase (CK) and phosphoglycerate mutase (PGAM) in normal human muscle, both aneurally cultured and co-cultured with fetal mouse spinal cord complex. Innervated cultures attain a greater degree of maturity than non-innervated cultures, as revealed by light and electron microscopy, showing well-developed sarcomeres and motor endplates after several weeks in vitro. During early stages of muscle regeneration in co-culture, characteristic fetal isozyme patterns of CK-BB and PGAM-BB activity predominate, as in aneural cultures. The muscle-specific isozymes (CK-MM; PGAM-MM) begin to appear as the muscle differentiates, and after 2-3 months in co-culture only, virtually all enzyme activity is due to the muscle-specific forms of CK and PGAM, as is normally observed in mature skeletal muscle in vivo.  相似文献   

12.
We have demonstrated earlier that the per sperm creatine-N-phosphotransferase (CK) activity was increased in oligospermic vs. normospermic men. The increased sperm CK activity is related to higher concentrations of cellular CK, which may indicate a defect of cytoplasmic extrusion during spermatogenesis. In the present work, we examined whether in spermatozoa, similar to muscle, there is a change in the synthesis of B-CK and M-CK isoforms during cellular differentiation. In 109 normospermic and 50 oligospermic specimens (sperm concentrations 60.6 +/- 3.7 vs. 8.8 +/- 1.3 million sperm/ml; all values expressed as mean +/- SEM), the relative concentrations of the M-CK isoform (M-CK/M-CK + B-CK) were 27.2% +/- 2.1% vs. 6.7% +/- 0.9% (P less than 0.001). The per sperm CK activities showed comparable differences (0.21 +/- 0.02 vs. 0.89 +/- 0.1 CK IU/100 million sperm; P less than 0.001) in the two groups, and there was a close correlation between per sperm CK activities and M-CK concentrations (R = 0.69, P less than 0.001, N = 159). This indicates that the loss of cytoplasm and the commencement of M-CK isoform synthesis are related events during the last phase of spermatogenesis, also that the incidence of spermatozoa with incomplete cellular maturation is higher in oligospermic specimens. In characterizing the M-CK, we found that sperm (unlike muscle tissue) lack the MB hybrid of CK dimers. However, in the presence of muscle M-CK, the muscle-sperm MB-CK hybrid has formed. Thus in sperm and muscle the M-CK isoforms are structurally different, whereas the B-CKs are apparently homologous.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Creatine kinase (CK) is located in an isoenzyme-specific manner at subcellular sites of energy production and consumption. In muscle cells, the muscle-type CK isoform (MM-CK) specifically interacts with the sarcomeric M-line, while the highly homologous brain-type CK isoform (BB-CK) does not share this property. Sequence comparison revealed two pairs of lysine residues that are highly conserved in M-CK but are not present in B-CK. The role of these lysines in mediating M-line interaction was tested with a set of M-CK and B-CK point mutants and chimeras. We found that all four lysine residues are involved in the isoenzyme-specific M-line interaction, acting pair-wise as strong (K104/K115) and weak interaction sites (K8/K24). An exchange of these lysines in MM-CK led to a loss of M-line binding, whereas the introduction of the very same lysines into BB-CK led to a gain of function by transforming BB-CK into a fully competent M-line-binding protein. The role of the four lysines in MM-CK is discussed within the context of the recently solved x-ray structures of MM-CK and BB-CK.  相似文献   

14.
15.
Sequence homology and structure predictions of the creatine kinase isoenzymes   总被引:13,自引:0,他引:13  
Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidino kinases revealed high homology and were used to determine the evolutionary relationships of the various guamidino kinases. A CK framework is defined, consisting of the most conserved sequence blocks, and diagnostic boxes are identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure as well as of aromatic amino acids that are involved in catalysis.Abbreviations GuaK guanidino kinase - CK creatine kinase - B-and M-CK brain and muscle cytosolic CK isoenzyme - Mi-CK mitochondrial CK isoenzyme - ArgK arginine kinase - Cr creatine - PCr phosphorylcreatine - PArg phosphorylarginine  相似文献   

16.
To assess the significance of energy supply routes in cellular energetic homeostasis, net phosphoryl fluxes catalyzed by creatine kinase (CK), adenylate kinase (AK) and glycolytic enzymes were quantified using 18O-phosphoryl labeling. Diaphragm muscle from double M-CK/ScCKmit knockout mice exhibited virtually no CK-catalyzed phosphotransfer. Deletion of the cytosolic M-CK reduced CK-catalyzed phosphotransfer by 20%, while the absence of the mitochondrial ScCKmit isoform did not affect creatine phosphate metabolic flux. Contribution of the AK-catalyzed phosphotransfer to total cellular ATP turnover was 15.0, 17.2, 20.2 and 28.0% in wild type, ScCKmit, M-CK and M-CK/ScCKmit deficient muscles, respectively. Glycolytic phosphotransfer, assessed by G-6-P 18O-phosphoryl labeling, was elevated by 32 and 65% in M-CK and M-CK/ScCKmit deficient muscles, respectively. Inhibition of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)/phosphoglycerate kinase (PGK) in CK deficient muscles abolished inorganic phosphate compartmentation and redirected high-energy phosphoryl flux through the AK network. Under such conditions, AK phosphotransfer rate was equal to 86% of the total cellular ATP turnover concomitant with almost normal muscle performance. This indicates that near-equilibrium glycolytic phosphotransfer reactions catalyzed by the GAPDH/PGK support a significant portion of the high-energy phosphoryl transfer in CK deficient muscles. However, CK deficient muscles displayed aberrant ATPase-ATPsynthase communication along with lower energetic efficiency (P/O ratio), and were more sensitive to metabolic stress induced by chemical hypoxia. Thus, redistribution of phosphotransfer through glycolytic and AK networks contributes to energetic homeostasis in muscles under genetic and metabolic stress complementing loss of CK function.  相似文献   

17.
The soluble creatine kinase isozymes CK-II, CK-III, and CK-IV fromXenopus laevis have been purified to apparent homogeneity and their subunits characterized by means of molecular weight, peptide pattern, and dissociation-reassociation experiments. CK-III and CK-IV are homodimeric isozymes whose subunits are distinct in both molecular weight (42,000 and 41,000, respectively) andStaphylococcus aureus V8 peptide pattern. In dissociation-reassociation experiments, those two subunits do form active heterodimeric isozymes with one another or with rabbit M-CK subunits. Hybrid CK-III/IV isozymes occur also during embryonic differentiation and in adult heart muscle, whereas most other adult tissues contain only homodimeric CK-III or CK-IV isozymes. The CK-II isozyme is a heterodimer composed of one CK-III subunit and another subunit specific to CK-II (M r =41,000). Neitherin vivo norin vitro does this subunit seem able to form homodimers or heterodimers with CK-IV and rabbit M-CK subunits. If we take into account the apparent association of CK-I isozyme with cellular organelles, these results corroborate earlier statements and suggest that the CK isozyme system ofX. laevis is encoded by at least four differentially regulated genomic loci.  相似文献   

18.
The purpose of this study was to elucidate the functional differences between the CK isoforms by cloning the cDNAs of 12 CK isoforms: the M and B cytoplasmic forms and uMiCK from mouse, the M1, M2 and B cytoplasmic forms from Danio rerio, M1 and M2 cytoplasmic forms from the lower vertebrate Lampetra japonica, a cytoplasmic CK and a MiCK from the marine worm Neanthes diversicolor, and a cytoplasmic CK and a MiCK from the soft coral Dendronephthya gigantea. These were expressed in Escherichia coli as a fusion protein with maltose-binding protein, and kinetic constants (K(m), K(d) and k(cat)) of all the recombinant enzymes, except for the unstable Dendronephthya cytoplasmic CK, were determined for the forward reaction. The kinetic constants of the M- and B-forms of the mouse and Danio cytoplasmic CKs differed significantly, with the K(m) for creatine (K(m)Cr) of M-CK being three- to nine-fold higher than that of B-CK, possibly reflecting differences in the concentration of creatine in muscle and brain cells. The mouse uMiCK had the lowest K(m)Cr value among the CK isoforms. In addition, it also exhibited a strong synergism for substrate binding (K(d)/K(m)=11.8). These results indicate that uMiCK has unique characteristics compared with other CK isoforms. Two subisoforms of M-CK were found in the lower vertebrate L. japonica, and the kinetic constants of recombinant M1- and M2-CKs differed significantly. The M1- and M2-CKs were expressed in skeletal muscle with a ratio of 7:3, while M1-CK was the predominant subisoform in the testis. The kinetic constants of cytoplasmic CK from the marine worm Neanthes were significantly different from those of Neanthes MiCK, possibly indicating that functional differences among CK isoforms occurred at least before the divergence of annelids from other protostome invertebrates.  相似文献   

19.
Brain-type creatine kinase B-CK (EC 2.7.3.2) was purified from several chicken tissues, e.g. cardiac muscle, brain, gizzard and retina. Two major monomeric chicken B-CK subunits, designated Bb (basic) and Ba (acidic), which differ in isoelectric point, were separated by chromatofocusing in the presence of 8 M urea on a MonoP column. The two subunits were shown by peptide mapping, amino acid analysis and partial sequencing, as well as by immunological criteria, to be distinct B-CK polypeptides. The N-terminal sequence of 30 amino acid residues of Bb correspond entirely to data derived from a B-CK c-DNA clone termed H4 [(1986) Nucleic Acids Res. 14, 1449-1463], whereas the N-terminus of the acidic Ba species was blocked. Native dimeric B-CK isoenzymes obtained from these tissues were separated by ion exchange chromatography on a MonoQ column yielding two B-CK dimer populations, type-I and type-II B-CK, varying in relative proportions. Quantitation of the CK activity peak ratios of these two populations revealed the existence of a tissue-specific, post-translational mechanism regulating B-CK dimerization in neural tissues. Tissue-specific dimerization of the two distinct B-CK monomer species may represent a means of specifying the intracellular distribution of the dimeric B-CK subspecies.  相似文献   

20.
Previous studies have suggested that MM creatine kinase is a muscle-specific protein and is not present in adult brain tissue. We have isolated a protein from human brain with an apparent molecular weight of 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis which is identical to the muscle M creatine kinase isoenzyme subunit at all 30 sequenced amino acid residues and possesses creatine kinase enzymatic activity following nondenaturing agarose-gel electrophoresis. Immunohistochemistry localizes M creatine kinase to discrete areas of adult human brain. Northern blot analysis of both total and poly(A)-selected RNA isolated from brain did not detect M creatine kinase mRNA. However, polymerase chain reaction amplification of cDNA synthesized from human placenta, heart, and brain mRNA detected M creatine kinase message in both heart and brain but not placenta which contains no detectable M creatine kinase protein. N1E115 and NS20Y, mouse neuroblastoma cell lines which have been used as models of neural cell differentiation, were found also to express MM creatine kinase. Moreover, a transiently transfected reporter gene with 4,800 base pairs of M creatine kinase upstream region fused to chloramphenicol acetyltransferase was expressed during differentiation of these neural cell lines. In summary, MM creatine kinase is present in human brain and we suggest the M creatine kinase upstream region is sufficient to modulate M creatine kinase expression in certain neuronal cells and may be regulated independently from other muscle genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号