首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Professional phagocytes digest internalized microorganisms by actively delivering them into the phagolysosomal compartment. Intravacuolar bacterial pathogens have evolved a variety of effective strategies to bypass the default pathway of phagosomal maturation to create a niche permissive for their survival and propagation. Here we discuss recent progress in our understanding of the sophisticated mechanisms used by Legionella pneumophila to survive in phagocytes.  相似文献   

2.
ABSTRACT: BACKGROUND: Pulmonary load of Legionella pneumophila in mice is normally determined by counting serial dilutions of bacterial colony forming units (CFU) on agar plates. This process is often tedious and time consuming. We describe a novel, rapid and versatile flow cytometric method that detects bacteria phagocytosed by neutrophils. FINDINGS: Mice were infected with L. pneumophila via intratracheal or intranasal administration. At various times after bacteria inoculation, mouse lungs were harvested and analysed concurrently for bacterial load by colony counting and flow cytometry analysis. The number of L. pneumophila-containing neutrophils correlated strongly with CFU obtained by bacteriological culture. CONCLUSIONS: This technique can be utilised to determine pulmonary bacterial load and may be used in conjunction with other flow cytometric based analyses of the resulting immune response.  相似文献   

3.
4.

Background

Legionella pneumophila is an important causative agent of severe pneumonia in humans. Human alveolar epithelium and macrophages are effective barriers for inhaled microorganisms and actively participate in the initiation of innate host defense. The beta defensin-3 (hBD-3), an antimicrobial peptide is an important component of the innate immune response of the human lung. Therefore we hypothesize that hBD-3 might be important for immune defense towards L. pneumophila.

Methods

We investigated the effects of L. pneumophila and different TLR agonists on pulmonary cells in regard to hBD-3 expression by ELISA. Furthermore, siRNA-mediated inhibition of TLRs as well as chemical inhibition of potential downstream signaling molecules was used for functional analysis.

Results

L. pneumophila induced release of hBD-3 in pulmonary epithelium and alveolar macrophages. A similar response was observed when epithelial cells were treated with different TLR agonists. Inhibition of TLR2, TLR5, and TLR9 expression led to a decreased hBD-3 expression. Furthermore expression of hBD-3 was mediated through a JNK dependent activation of AP-1 (c-Jun) but appeared to be independent of NF-κB. Additionally, we demonstrate that hBD-3 elicited a strong antimicrobial effect on L. pneumophila replication.

Conclusions

Taken together, human pulmonary cells produce hBD-3 upon L. pneumophila infection via a TLR-JNK-AP-1-dependent pathway which may contribute to an efficient innate immune defense.  相似文献   

5.
Legionella pneumophila has become a paradigm for facultative intracellular pathogens that modulate biogenesis of their phagosomes into replicative niches. The ability to alter host cell biology and tailor it into a hospitable host for intracellular proliferation is at the crux of the mechanism of pathogenesis of Legionnaires' disease.  相似文献   

6.
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.  相似文献   

7.
8.
Abstract Legionella pneumophila readily grows in cultures of thioglycollate (TGC)-induced macrophages (MPs) from A/J mice, but not in MPs from BALB/c mice or other mouse strains. In the present study, the growth of Legionella pneumophila in MPs from A/J and BALB/c mice, as well as hybrids of the two strains and back-crossed mice, was investigated to determine whether the permissiveness of growth of these bacteria was due to an inherited trait of the MPs. The MPs from all A/J mice supported the growth of Legionella , regardless of whether they were obtained from TGC or casein injected donors, but the cells from the mice given TGC supported growth of L. pneumophila much better than cells from mice injected with casein. Furthermore, MPs obtained from all BALB/c mice treated with either TGC or casein were nonpermissive for the growth of L. pneumophila . MPs from approximately 46% of the back-crossed ACF1 to A/J mice were permissive for L. pneumophila growth, while MPs from all ACF1 to back-crossed BALB/c mice were found to be nonpermissive. MPs from approximately 19% of ACF2 mice were permissive for L. pneumophila . Killing activities of MPs using temperature sensitive mutants of Salmonella typhimurium were variable and did not correlate with permissiveness or nonpermissiveness for growth of L. pneumophila . In addition, the number of inflammatory cells in the peritoneal cavity induced in response to TGC did not correlate with the permissiveness or nonpermissiveness of the MPs from various mouse strains to Legionella , indicating the permissive nature of the cells is controlled by genetic mechanisms involving a recessive phenotype but differs from resistance genes such as Ity important for replication of S. typhimurium .  相似文献   

9.
Twitching motility is a form of bacterial translocation over solid or semi-solid surfaces mediated by the extension, tethering, and subsequent retraction of type IV pili. These pili are also known to be involved in virulence, biofilm formation, formation of fruiting bodies, horizontal gene transfer, and protein secretion. We have characterized the presence of twitching motility on agar plates in Legionella pneumophila , the etiological agent of Legionnaires' disease. By examining twitching motility zones, we have demonstrated that twitching motility was dependent on agar thickness/concentration, the chemical composition of the media, the presence of charcoal and cysteine, proximity to other bacteria, and temperature. A knockout mutant of the pilus subunit, pilE , exhibited a total loss of twitching motility at 37 °C, but not at 27 °C, suggesting either the existence of a compensating pilus subunit or of another twitching motility system in this organism.  相似文献   

10.
This review describes the mechanisms of gene transfer in Legionella pneumophila. To date, conjugation and transformation have been reported for this organism. Recent reports indicate that an endogenous system of plasmid transfer appears to be required for the intracellular survival and multiplication of L. pneumophila in host cells.  相似文献   

11.
Heat-shock response in Legionella pneumophila   总被引:10,自引:0,他引:10  
The heat-shock response of Legionella pneumophila was examined by radiolabelling bacterial cell proteins with [35S]methionine following a temperature shift from 30 to 42 degrees C. Five heat-shock proteins were identified as having molecular masses of 17, 60, 70, 78, and 85 kilodaltons (kDa). The 85- and 60-kDa proteins were equally distributed between supernatant and pellet fractions following ultracentrifugation at 100,000 x g, the 70- and 78-kDa proteins were found primarily in the supernatant, and the 17-kDa protein was found primarily in the pellet. Synthesis of subsets of the heat-shock proteins could be stimulated by novobiocin, patulin, or puromycin. Ethanol, an effector of the heat-shock response in other microorganisms, had little effect on L. pneumophila, even at the highest concentration tolerated by the bacterial cells (1.9%). Finally, the 60-kDa heat-shock protein of L. pneumophila was immunologically cross-reactive with a polyclonal antibody prepared to the Escherichia coli groEL protein. However, a mouse monoclonal antibody reactive with the 60-kDa protein of all legionellae tested did not cross-react with the E. coli groEL protein, suggesting that the Legionella 60-kDa protein contains common and unique epitopes.  相似文献   

12.
【目的】为能实时直观了解嗜肺军团菌感染细胞的过程,研究细菌在细胞内的变化及其与宿主细胞间的相互作用关系。【方法】通过基因敲除、克隆回补等重组构建绿色荧光蛋白(GFP)稳定高表达的嗜肺军团菌株,利用该菌株建立小鼠巨噬细胞Raw264.7的感染模型。【结果】通过荧光显微镜可实时观察细菌感染细胞的全过程,包括细菌在细胞内的形态变化、增殖和裂解宿主细胞等。【结论】重组菌可替代野生菌株在细胞感染中应用,为直观研究嗜肺军团菌与被感染细胞之间的相互作用关系,以及进行相关药物模型的制备、药物筛选、耐药机制研究等提供了新的手段。  相似文献   

13.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

14.
Cytolytic activity of Legionella pneumophila   总被引:1,自引:0,他引:1  
The properties of cytolysin and metalloproteinase purified by different methods have been studied. The physico-chemical properties of these proteins, including their molecular weight, immunodiffusion patterns, the degree of inhibition by EDTA and diethyl pyrocarbonate, amino acid composition, cytolytic and proteolytic activity, have proved to be similar. We have come to the conclusion that cytolysin and metalloproteinase have similar composition and metalloproteinase activity determines the cytolytic and necrotic activity of the above-mentioned cytolysin.  相似文献   

15.
16.
This study examined whether Legionella pneumophila is able to thrive on heat-killed microbial cells (necrotrophy) present in biofilms or heat-treated water systems. Quantification by means of plate counting, real-time PCR, and flow cytometry demonstrated necrotrophic growth of L. pneumophila in water after 96 h, when at least 100 dead cells are available to one L. pneumophila cell. Compared to the starting concentration of L. pneumophila, the maximum observed necrotrophic growth was 1.89 log units for real-time PCR and 1.49 log units for plate counting. The average growth was 1.57 +/- 0.32 log units (n = 5) for real-time PCR and 1.14 +/- 0.35 log units (n = 5) for plate counting. Viability staining and flow cytometry showed that the fraction of living cells in the L. pneumophila population rose from the initial 54% to 82% after 96 h. Growth was measured on heat-killed Pseudomonas putida, Escherichia coli, Acanthamoeba castellanii, Saccharomyces boulardii, and a biofilm sample. Gram-positive organisms did not result in significant growth of L. pneumophila, probably due to their robust cell wall structure. Although necrotrophy showed lower growth yields compared to replication within protozoan hosts, these findings indicate that it may be of major importance in the environmental persistence of L. pneumophila. Techniques aimed at the elimination of protozoa or biofilm from water systems will not necessarily result in a subsequent removal of L. pneumophila unless the formation of dead microbial cells is minimized.  相似文献   

17.
Necrotrophic Growth of Legionella pneumophila   总被引:1,自引:0,他引:1       下载免费PDF全文
This study examined whether Legionella pneumophila is able to thrive on heat-killed microbial cells (necrotrophy) present in biofilms or heat-treated water systems. Quantification by means of plate counting, real-time PCR, and flow cytometry demonstrated necrotrophic growth of L. pneumophila in water after 96 h, when at least 100 dead cells are available to one L. pneumophila cell. Compared to the starting concentration of L. pneumophila, the maximum observed necrotrophic growth was 1.89 log units for real-time PCR and 1.49 log units for plate counting. The average growth was 1.57 ± 0.32 log units (n = 5) for real-time PCR and 1.14 ± 0.35 log units (n = 5) for plate counting. Viability staining and flow cytometry showed that the fraction of living cells in the L. pneumophila population rose from the initial 54% to 82% after 96 h. Growth was measured on heat-killed Pseudomonas putida, Escherichia coli, Acanthamoeba castellanii, Saccharomyces boulardii, and a biofilm sample. Gram-positive organisms did not result in significant growth of L. pneumophila, probably due to their robust cell wall structure. Although necrotrophy showed lower growth yields compared to replication within protozoan hosts, these findings indicate that it may be of major importance in the environmental persistence of L. pneumophila. Techniques aimed at the elimination of protozoa or biofilm from water systems will not necessarily result in a subsequent removal of L. pneumophila unless the formation of dead microbial cells is minimized.  相似文献   

18.
Although many bacteria are known to be naturally competent for DNA uptake, this ability varies dramatically between species and even within a single species, some isolates display high levels of competence while others seem to be completely nontransformable. Surprisingly, many nontransformable bacterial strains appear to encode components necessary for DNA uptake. We believe that many such strains are actually competent but that this ability has been overlooked because standard laboratory conditions are inappropriate for competence induction. For example, most strains of the gram-negative bacterium Legionella pneumophila are not competent under normal laboratory conditions of aerobic growth at 37 degrees C. However, it was previously reported that microaerophilic growth at 37 degrees C allows L. pneumophila serogroup 1 strain AA100 to be naturally transformed. Here we report that another L. pneumophila serogroup 1 strain, Lp02, can also be transformed under these conditions. Moreover, Lp02 can be induced to high levels of competence by a second set of conditions, aerobic growth at 30 degrees C. In contrast to Lp02, AA100 is only minimally transformable at 30 degrees C, indicating that Lp02 is hypercompetent under these conditions. To identify potential causes of hypercompetence, we isolated mutants of AA100 that exhibited enhanced DNA uptake. Characterization of these mutants revealed two genes, proQ and comR, that are involved in regulating competence in L. pneumophila. This approach, involving the isolation of hypercompetent mutants, shows great promise as a method for identifying natural transformation in bacterial species previously thought to be nontransformable.  相似文献   

19.
MyD88-dependent signalling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although toll-like receptor (TLR)2 contributes to MyD88-dependent clearance of L. pneumophila , TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila , the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent interferon-gamma (IFN-γ) production in a mouse was examined. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared with control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by natural killer cells and required IL-18R signalling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila . Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by natural killer cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.  相似文献   

20.
Similar to guinea pig macrophages and human monocytes, macrophages from the peritoneal cavity of thioglycolate pretreated A/J mice are permissive for growth of Legionella pneumophila. In contrast, macrophages from BDF1 mice are not permissive for L. pneumophila. Lymphocytes from A/J and BDF1 mice proliferated in response to Legionella Ag but guinea pig lymphocytes did not. Also, splenocyte cultures from A/J mice treated with either Con A or Legionella vaccine produced supernatants which induced A/J macrophages to restrict Legionella growth, but guinea pig splenocyte culture supernatants obtained after stimulation with L. pneumophila vaccine did not induce Legionella growth restriction activity by guinea pig macrophages. Murine rIFN-gamma but not rIFN-alpha markedly inhibited growth of Legionella in A/J mouse macrophages and monoclonal anti-IFN-gamma antibody neutralized the anti-Legionella activity of culture supernatants from A/J mouse splenocytes responding to Legionella Ag. From these data, IFN-gamma appears to be an important factor in anti-Legionella activity of Ag-activated mouse splenocyte culture supernatants. Cyclosporin A, when given to either A/J or BDF1 mice, reduced the proliferation responses of splenocytes to T cell mitogens and also decreased the IFN production of A/J spleen cells to Legionella Ag. In addition, drug treatment decreased the resistance of A/J mice to Legionella infection as shown by an increase in the number of viable bacteria in the liver. However, injection of drug treated mice with lymphokine-rich splenocyte culture supernatant reconstituted the resistance of these animals. These results suggest an important role for lymphocyte activation and lymphokine production in the resistance of A/J mice to Legionella infection. The greater resistance of BDF1 mice, however, may result from nonpermissive macrophages and responsive lymphocytes. In the case of guinea pigs, susceptibility to Legionella infections may result from both the permissive nature of the macrophages and the relatively unresponsive nature of the lymphocytes in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号