共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
V V Sukhodolets 《Genetika》1985,21(5):693-706
A review of literature data reveals that for the last years, the molecular biology techniques have been of an increasing use in the study of the Escherichia coli genome, having supplemented the standard genetic mapping. For the proper understanding of the Escherichia coli genome organization, recombinational events occurring in the course of evolution should be considered. The bacterial genome seems to carry traces of both "long-term" evolution, possibly responsible for appearance of the bacterial cell itself, and "current" evolution, consisting mainly of periodic genome entering by new plasmid-originated genes. It is supposed that in the process of stabilization within a genome, every new gene undergoes a stage of the "transgene", that is the gene situated in a transposon on the chromosome. In parallel with integration of new genes into the genome, some genes deleting should also take place. The formation of deletions could occur by unequal crossing over in segments of direct homologous repeats which seem to be ordinarily revealed in the experimental study of the tandem gene duplications. 相似文献
3.
Codon pairs in the genome of Escherichia coli 总被引:9,自引:0,他引:9
MOTIVATION: The effect of two neighboring codons (codon pairs) on gene expression is mediated via the interaction of their cognate tRNAs occupying the two functional ribosomal sites during the translation elongation step. For steric reasons it is reasonable to assume that not all combinations of codons and therefore of tRNAs are equally favorable when situated on the ribosome surface. Aiming of identifying preferential and rare codon pairs, we have determined the frequency of occurrence of all possible combinations of codon pairs in the entire genome of Escherichia coli (E.coli). RESULTS: The frequency of occurrence of the 3904 codon pairs comprising both sense:sense and sense:stop codon pairs in the full set of E.coli 4289 ORFs was found to vary from zero to 4913 times. For most of the pairs we have observed a significant difference between the real and statistically predicted frequency of occurrence. The analysis of 334 highly expressed and 303 poorly expressed E.coli genes showed that codon pair usage is different for the two gene categories. Using an especially defined criterion (Delta(REG)), the codon pairs are classified as 'hypothetically attenuating' (HAP) and 'hypothetically non-attenuating' (HNAP) and their possible effect on translation is discussed. AVAILABILITY: The program used in this study is available at http://www.bio21.bas.bg/codonpairs/ 相似文献
4.
Kang Y Durfee T Glasner JD Qiu Y Frisch D Winterberg KM Blattner FR 《Journal of bacteriology》2004,186(15):4921-4930
A high-throughput method has been developed for the systematic mutagenesis of the Escherichia coli genome. The system is based on in vitro transposition of a modified Tn5 element, the Sce-poson, into linear fragments of each open reading frame. The transposon introduces both positive (kanamycin resistance) and negative (I-SceI recognition site) selectable markers for isolation of mutants and subsequent allele replacement, respectively. Reaction products are then introduced into the genome by homologous recombination via the lambdaRed proteins. The method has yielded insertion alleles for 1976 genes during a first pass through the genome including, unexpectedly, a number of known and putative essential genes. Sce-poson insertions can be easily replaced by markerless mutations by using the I-SceI homing endonuclease to select against retention of the transposon as demonstrated by the substitution of amber and/or in-frame deletions in six different genes. This allows a Sce-poson-containing gene to be specifically targeted for either designed or random modifications, as well as permitting the stepwise engineering of strains with multiple mutations. The promiscuous nature of Tn5 transposition also enables a targeted gene to be dissected by using randomly inserted Sce-posons as shown by a lacZ allelic series. Finally, assessment of the insertion sites by an iterative weighted matrix algorithm reveals that these hyperactive Tn5 complexes generally recognize a highly degenerate asymmetric motif on one end of the target site helping to explain the randomness of Tn5 transposition. 相似文献
5.
An Escherichia coli lysogen was constructed with a lambda phage bearing a lacZ gene surrounded by about 100 x 10(3) base-pairs of dispensable DNA. The lacZ mutants induced by gamma rays in this lysogen were more than 10% large deletions, ranging in size from 0.6 x 10(-3) to 70 x 10(3) base-pairs. These deletions were centered, not on lacZ, but on a ColE1 origin of DNA replication located 1.2 x 10(3) bases downstream from lacZ. This suggested that this origin of replication was involved in the process by which the deletions were formed. In agreement with this hypothesis, a lysogen of the same phage without the ColE1 origin showed a very much lower percentage of radiation-induced deletions, as did a second lysogen of a lambda phage without any known plasmid origin of replication. Indirect evidence is presented for radiation-induced deletions centered on the lambda origin of DNA replication in a lysogen. It is suggested that high percentages of large deletions may occur among radiation-induced mutations in mammalian cells because deletions centered on some of the thousands of origins of replication in these genomes do not kill the cells. 相似文献
6.
Cui T Moro-oka N Ohsumi K Kodama K Ohshima T Ogasawara N Mori H Wanner B Niki H Horiuchi T 《EMBO reports》2007,8(2):181-187
Chromosomes in eukaryotes are linear, whereas those of most, but not all, prokaryotes are circular. To explore the effects of possessing a linear genome on prokaryotic cells, we linearized the Escherichia coli genome using the lysogenic lambda-like phage N15. Linear genome E. coli were viable and their genome structure was stable. There were no appreciable differences between cells with linear or circular genomes in growth rates, cell and nucleoid morphologies, genome-wide gene expression (with a few exceptions), and DNA gyrase- and topoisomerase IV-dependent growth. However, under dif-defective conditions, only cells with a circular genome developed an abnormal phenotype. Microscopy indicated that the ends of the linear genome, but not the circular genome, were separated and located at each end of a new-born cell. When tos - the cis-element required for linearization - was inserted into different chromosomal sites, those strains with the genome termini that were more remote from dif showed greater growth deficiencies. 相似文献
7.
Genomic DNA contains a wide variety of repetitive sequences. In Escherichia coli, there have been several classes of repetitive sequences reported, some of which cluster as tandem repeats. We propose a novel method for analyzing symbolic sequences by two-dimensional pattern formation with color-coding. We applied this method for searching tandem repeats in the E. coli genome and found approximately 50 repeats with periods longer than 30 bases. The longest repeat has a period of 1267 bases. 相似文献
8.
Chromosome organizations of related bacterial genera are well conserved despite a very long divergence period. We have assessed the forces limiting bacterial genome plasticity in Escherichia coli by measuring the respective effect of altering different parameters, including DNA replication, compositional skew of replichores, coordination of gene expression with DNA replication, replication-associated gene dosage, and chromosome organization into macrodomains. Chromosomes were rearranged by large inversions. Changes in the compositional skew of replichores, in the coordination of gene expression with DNA replication or in the replication-associated gene dosage have only a moderate effect on cell physiology because large rearrangements inverting the orientation of several hundred genes inside a replichore are only slightly detrimental. By contrast, changing the balance between the two replication arms has a more drastic effect, and the recombinational rescue of replication forks is required for cell viability when one of the chromosome arms is less than half than the other one. Macrodomain organization also appears to be a major factor restricting chromosome plasticity, and two types of inverted configurations severely affect the cell cycle. First, the disruption of the Ter macrodomain with replication forks merging far from the normal replichore junction provoked chromosome segregation defects. The second major problematic configurations resulted from inversions between Ori and Right macrodomains, which perturb nucleoid distribution and early steps of cytokinesis. Consequences for the control of the bacterial cell cycle and for the evolution of bacterial chromosome configuration are discussed. 相似文献
9.
Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli 总被引:1,自引:0,他引:1
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant. 相似文献
10.
Isothermal titration calorimetry has been applied to characterize the thermodynamics of ligand binding to wild-type lactose permease (LacY) and a mutant (C154G) that strongly favors an inward facing conformation. The affinity of wild-type or mutant LacY for ligand and the change in free energy (DeltaG) upon binding are similar. However, with the wild type, the change in free energy upon binding is due primarily to an increase in the entropic free energy component (TDeltaS), whereas in marked contrast, an increase in enthalpy (DeltaH) is responsible for DeltaG in the mutant. Thus, wild-type LacY behaves as if there are multiple ligand-bound conformational states, whereas the mutant is severely restricted. The findings also indicate that the structure of the mutant represents a conformational intermediate in the overall transport cycle. 相似文献
11.
12.
13.
Heewook Lee Thomas G. Doak Ellen Popodi Patricia L. Foster Haixu Tang 《Nucleic acids research》2016,44(15):7109-7119
A majority of large-scale bacterial genome rearrangements involve mobile genetic elements such as insertion sequence (IS) elements. Here we report novel insertions and excisions of IS elements and recombination between homologous IS elements identified in a large collection of Escherichia coli mutation accumulation lines by analysis of whole genome shotgun sequencing data. Based on 857 identified events (758 IS insertions, 98 recombinations and 1 excision), we estimate that the rate of IS insertion is 3.5 × 10−4 insertions per genome per generation and the rate of IS homologous recombination is 4.5 × 10−5 recombinations per genome per generation. These events are mostly contributed by the IS elements IS1, IS2, IS5 and IS186. Spatial analysis of new insertions suggest that transposition is biased to proximal insertions, and the length spectrum of IS-caused deletions is largely explained by local hopping. For any of the ISs studied there is no region of the circular genome that is favored or disfavored for new insertions but there are notable hotspots for deletions. Some elements have preferences for non-coding sequence or for the beginning and end of coding regions, largely explained by target site motifs. Interestingly, transposition and deletion rates remain constant across the wild-type and 12 mutant E. coli lines, each deficient in a distinct DNA repair pathway. Finally, we characterized the target sites of four IS families, confirming previous results and characterizing a highly specific pattern at IS186 target-sites, 5′-GGGG(N6/N7)CCCC-3′. We also detected 48 long deletions not involving IS elements. 相似文献
14.
15.
Multidimensional annotation of the Escherichia coli K-12 genome 总被引:2,自引:0,他引:2
Karp PD Keseler IM Shearer A Latendresse M Krummenacker M Paley SM Paulsen I Collado-Vides J Gama-Castro S Peralta-Gil M Santos-Zavaleta A Peñaloza-Spínola MI Bonavides-Martinez C Ingraham J 《Nucleic acids research》2007,35(22):7577-7590
16.
Hazen TH Sahl JW Redman JC Morris CR Daugherty SC Chibucos MC Sengamalay NA Fraser-Liggett CM Steinsland H Whittam TS Whittam B Manning SD Rasko DA 《Journal of bacteriology》2012,194(11):3026-3027
We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens. 相似文献
17.
The evolutionary history of the entire Escherichia coli chromosome was traced by examining the distribution of the approximately 4300 open reading frames (ORFs) from E.coli MG1655 among strains of known genealogical relationships. Using this framework to deduce the incidence of gene transfer and gene loss, a total of 67 events-37 additions and 30 deletions-were required to account for the distribution of all genes now present in the MG1655 chromosome. Nearly 90% of the ORFs were common to all strains examined, but, given the variation in gene content and chromosome size, strains can contain well over a megabase of unique DNA, conferring traits that distinguish them from other members of the species. Moreover, strains vary widely in their frequencies of deletions, which probably accounts for the variation in genome size within the species. 相似文献
18.
It has been demonstrated that the genome of phage D3112 of Preudomonas aeruginosa can be transposed into Escherichia coli chromosome as a component of the hybrid plasmid RP4 TcrKms::D3112. Also, transposition of D3112 from E. coli (D3112) chromosome into RP4 plasmid occurs. The phage stimulates the chromosome mobilizing activity of RP4 plasmid, similar to other transposons. E. coli (RP4::D3112) cells were previously shown to form no colonies at 30 degrees C. Auxotrophic mutants and mutants incapable of utilizing different carbohydrates were found among E. coli clones survived after a long incubation at 30 degrees C (at frequencies approximately 10(-3) - 10(-4). These mutants inherited stably the capability to produce D3112 phage. E. coli auxotrophic mutants have arisen indeed as a consequence of phage integration into the E. coli chromosome, since prototrophic transductants derived from these mutants after their treatment with generalized transducing P1 phage have lost the ability to produce D3112 phage. Clones with mutations in Km or Tc genes of RP4 plasmid, occurring at high frequencies (about 3%) were found after introduction of RP4 into E. coli (D3112). These mutant RP4 plasmids carry insertions of D3112 genomes. Clones of E. coli which lost mutant plasmids still produce D3112 and retain their initial auxotrophic mutations. 相似文献
19.
A new measure for assessing codon bias of one group of genes with respect to a second group of genes is introduced. In this formulation, codon bias correlations for Escherichia coli genes are evaluated for level of expression, for contrasts along genes, for genes in different 200 kb (or longer) contigs around the genome, for effects of gene size, for variation over different function classes, for codon bias in relation to possible lateral transfer and for dicodon bias for some gene classes. Among the function classes, codon biases of ribosomal proteins are the most deviant from the codon frequencies of the average E. coli gene. Other classes of ‘highly expressed genes’ (e.g. amino acyl tRNA synthetases, chaperonins, modification genes essential to translation activities) show less extreme codon biases. Consistently for genes with experimentally determined expression rates in the exponential growth phase, those of highest molar abundances are more deviant from the average gene codon frequencies and are more similar in codon frequencies to the average ribosomal protein gene. Independent of gene size, the codon biases in the 5′ third of genes deviate by more than a factor of two from those in the middle and 3′ thirds. In this context, there appear to be conflicting selection pressures imposed by the constraints of ribosomal binding, or more generally the early phase of protein synthesis (about the first 50 codons) may be more biased than the complete nascent polypeptide. In partitioning the E. coli genome into 10 equal lengths, pronounced differences in codon site 3 G+C frequencies accumulate. Genes near to oriC have 5% greater codon site 3 G+C frequencies than do genes from the ter region. This difference also is observed between small (100–300 codons) and large (>800 codons) genes. This result contrasts with that for eukaryotic genomes (including human, Caenorhabditis elegans and yeast) where long genes tend to have site 3 more AT rich than short genes. Many of the above results are special for E. coli genes and do not apply to genes of most bacterial genomes. A gene is defined as alien (possibly horizontally transferred) if its codon bias relative to the average gene exceeds a high threshold and the codon bias relative to ribosomal proteins is also appropriately high. These are identified, including four clusters (operons). The bulk of these genes have no known function. 相似文献
20.
Segmental flexibility in Escherichia coli ribosomal protein S1 as studied by fluorescence polarization.
下载免费PDF全文

Ribosomal protein S1 covalently reacts with approximately one equivalent of iodoacetylethylenediamine (1,5-napthol sulfonate (IAEDANS) or iodoacetylaminofluorescein (IAAF). The product AEDANS-S1 can bind to 30S ribosomal subunits lacking S1 as shown by polyacrylamide-agarose gel electrophoresis AEDANS-S1 and AAF-S1 when added back to S1-depleted 30S subunits modulate poly(U)-dependent polyphenylalanine synthesis in the presence of IF3 in a very similar way to unmodified S1. AEDANS-S1 also stimulates RI7-dependent fMet-tRNA binding to 1.0M NH4C1 washed ribosomes whereas AAF-S1 does not. Both static and nanosecond fluorescence polarization techniques were used to study the rotational motions of AEDANS-S1. Several previous studies had indicated that S1 is a highly extended protein which can be modeled by a prolate ellipsoid with an axial ratio of 10 to 1. However, the rotational correlation time we find is about half that expected for such a particle. This suggests that S1 is a flexible protein with at least two domains that can rotate independently. 相似文献