首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Hepatocytes isolated from neonatal (NN) and adult (AD) rats were seeded on fibronectin coated substratum and cultured in arginine-free medium supplemented with various combinations of insulin, dexamethasone, triiodothyronine (T3), albumin, and transferrin, in presence or absence of fibronectin depleted serum (FDS). The main finding is that in response to certain hormone mixtures, both NN and AD hepatocytes can be stimulated to proliferate, as revealed by an increase in cell number, a [3H]thymidine incorporation into nuclei, and extractable DNA as well as the appearance of mitotic figures. Moreover, this proliferative activity is associated with changes in hepatocyte ploidy. However, the proliferative response of NN hepatocytes to hormone action is much different from that of AD hepatocytes, and the addition of FDS amplifies this activity in NN but inhibits it in AD hepatocyte cultures. Measurements of tyrosine aminotransferase and lactate dehydrogenase activities indicate a good preservation of NN and AD hepatocyte functional integrity under certain culture conditions. A good maintenance of albumin production in NN and AD hepatocyte cultures requires the presence of dexamethasone, whereas theα-fetoprotein production in NN hepatocyte cultures is reduced quite rapidly under most conditions. Noα-fetoprotein is detectable in AD hepatocyte cultures. Part of this work was presented at the 31st Annual Meeting of the Tissue Culture Association, St. Louis, MO, June 1980.  相似文献   

2.
The genotoxic interaction of metals, which are common environmental contaminants, was studied in cultured hepatocytes. Freshly isolated rat hepatocytes were exposed to concentrations of cadmium, copper, silver and lead salts ranging from non-cytotoxic to moderately cytotoxic (as determined by LDH release), and the incorporation of [3H]thymidine into the DNA, as a measure of repair synthesis, was followed. In addition, the uptake of metals by the nuclear fraction was determined using Inductively Coupled Plasma/Mass Spectrometry or atomic absorption spectrophotometry. The evaluation of binding of 109Cd to the DNA in situ was also attempted. It was observed that after a 20 h exposure period, all the metals investigated were found in the nuclear fraction of hepatocytes, with Ag apparently being accumulated less efficiently. In parallel, Cd (0.18 to 1.8 µM) and Cu (7.9 to 78.5 µM) consistently produced a statistically significant stimulation of [3H]thymidine incorporation into the DNA, in the presence or absence of hydroxyurea while Ag was active only at the highest concentration tested (18.5 µM). In contrast, Pb failed to induce a UDS response at the levels used. Moreover, exposure of hepatocytes to 1.8 µM 109CdCl2 for 20 h led to a DNA binding ratio of 0.98 ± 0.23 ng Cd/ µg DNA. The present results support the view that the nucleus may be an important target organelle for metal toxicity.Abbreviations 2-AAF 2-acetylaminofluorene - Cd cadmium - HU hydroxyurea - lCP/MS inductively coupled plasma/mass spectrometry - Hg mercury - Ni nickel - UDS unscheduled DNA synthesis  相似文献   

3.
Summary Isolated rat hepatocytes maintained in primary culture on gas permeable membrane for 20 h form monolayers and establish at their cell borders a network of canaliculi (approximate diameter 3.5 μm). In the presence of the known choleretic bile acid dehydrocholate, dilation of canaliculi occurs. When nonfluorescent carboxyfluorescein diacetate ester is added to the culture medium, fluorescent carboxyfluorescein appears in the intracanalicular space. In the dilated state, fluid containing the fluorescent compound could be collected from the canaliculi by puncture with a micropipette. The intracanalicular space shows a negative electrical potential difference of 31 mV in reference to the bath solution and is 13.5 mV more positive with reference to recordings from the cytosol of cultured rat hepatocytes. Cultured rat hepatocytes grown on gas permeable membrane are energetically stable over 3 d. On Day 4, ATP levels increase markedly, whereas Na+−K+-ATPase activity declines. Ionic composition of hepatocytes, as measured by electronprobe element analysis on cryosection samples, does not change markedly during monolayer formation. With formation of bile canaliculi, the activity of alkaline phosphatase rapidly increases within 24 h and is stable for the next 3 d. Within that time the activity of γ-glutamyltranspeptidase, however, increases steadily, reaching a 1.6-fold higher activity than freshly isolated hepatocytes. Bile acids appear in the culture supernatant after 1 d. When unconjugated [14C]cholic acid is added to the cultures the supernatant contains also [14C]tauro- and [14C]glycocholic acid, indicating the preservation of conjugation capacity in these cultures. Total bile acid concentrations in the supernatant increase from 5 to 26 μM on Day 4. The cultures do not secrete α-fetoprotein. Monolayer cultures of hepatocytes in the presence of choleretic bile acids seem to be a suitable model system to collect and to analyze the composition of primary bile. In conjunction with the electrical parameters, it is possible to describe directly properties of bile secretion at the canalicular pole of the intact hepatocyte. This work was supported by the Deutsche Forschungsgemeinschaft, grant no. PE 250/5-1.  相似文献   

4.
Summary Leakage of lactate dehydrogenase and staining by the vital dye trypan blue were investigated in adult rat hepatocytes at the time of isolation, in suspensions up to 3 h and in primary monolayer cultures up to 3 d. These two parameters of plasma membrane integrity were found to correlate closely in hepatocyte suspensions, but to a lesser degree in monolayer cultures. Functional activity was demonstrated in culture by glucose consumption and lactic acid production. There was a balance of total lactate dehydrogenase (LDH) activity over time for both hepatocyte suspensions and cultures. Loss of LDH activity in the cell fraction was accompanied by a corresponding increase in enzyme activity in the media fraction. Lactate dehydrogenase activity per dye-excluding hepatocyte was calculated to be 9.2±1.5×10−6 IU assayed at 37°C for 25 preparations of isolated hepatocytes. The results suggest that leakage of cytoplasmic enzyme and vital dye staining are of comparable sensitivity in evaluating hepatocyte preparations. Measurement of LDH leakage offers a less subjective alternative to cell counting procedures and is applicable to both attached and suspended cells. This study was supported in part by Grants HL-11945-11 and 1-RO1-AM 26520-01A1 from the National Institutes of Health, Bethesda, MD.  相似文献   

5.
The modulation of liver growth control by the tumor promoter, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was investigated in primary hepatocytes of adult rats. Under defined conditions in serum-free cultures, the interaction of TCDD with growth-related hormones was studied. TCDD-treatment of the cultured hepatocytes for two days caused a transient stimulation of both DNA synthesis and mitotic activity. This effect was maximal at the very low nontoxic concentration of 10–12 M TCDD, i.e., two orders of magnitude below the optinzal concentrations for induction of drug metabolizing enzymes. Growth stimuladon by TCDD was dependent on the presence of growth-related hormones; in primary rat hepatocytes, TCDD acted synergistically with insulin and epidermal growth factor (EGF) and antagonized the growth inhibition by dexamethasone. Under culture conditions allowing high rates of DNA synthesis, e.g., at low concentrations of dexamethasone, in the presence of EGF plus alphal-adrenergic agonists or rat serum, no significant effect of TCDD on cellular growth was observed. Furthermore, TCDD failed to stimulate DNA synthesis in a rat hepatoma cell line, H4IIE, which is less sensitive to growth controlling factors than normal hepatocytes. Therefore, the results suggest that the growth modulation of primary rat hepatocytes by TCDD is the most sensitive parameter of the agent thus far observed. This effect may involve both a release from the growth inhibition caused, for instance, by glucocorticoids, as well as a direct growth-stimulating effect, synergistic to the one induced by insulin.Abbreviations Ah aryl hydrocarbon - EGF epidermal growth factor - EROD 7-ethoxyresorufin-0-deethylase - 3HdT [3H]thymidine - TCB 3,4,3,4-tetrachlorobiphenyl - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

6.
The effects of different concentrations of exogenously supplied dThd on DNA replication were investigated in seedlings of Pisum sativum. Nascent DNA was labeled with either [3H]dThd or [3H]dAdo in the presence of 1·10?6, 1·10?5 or 1·10?4 M unlabeled dThd. The rate of DNA synthesis was determined by measuring the kinetics of radioactivity incorporation into trichloroacetic acid-precipitable material and the size of the nascent molecules was investigated using alkaline sucrose gradients. The results obtained showed that high concentrations of exogenously supplied dThd accelerated the joining of completed nascent replicons without affecting the rate of DNA synthesis. This observation strengthens the hypothesis that the dTTP pool size is one of the factors controlling the timing of nascent replicon maturation.  相似文献   

7.
Summary Rat hepatocytes were maintained on three-dimensional cultures on sponge discs kept in Spinner Baskets (New Brunswick Scientific Co., New Brunswick, NJ, USA) with continuously circulating serum-free hepatocyte growth medium (HGM) containing hepatocyte growth factor (HGF) and epidermal growth factor (EGF). Hepatocytes were embedded in polyester sponge discs with a collagen gel at the concentration of 5 million cells/ml. Atmospheric gas containing 7% CO2 was directly bubbled into the medium. Agitation by the impeller created a continuous medium-flow through the packed hepatocytes. Comparison between identically prepared perfused and stationery cultures showed that hepatocytes in the perfused cultures maintain higher levels of DNA synthesis. These results demonstrate the value of perfusion systems and also show that hepatocytes can proliferate and maintain differentiation in three-dimensional culture environments.  相似文献   

8.
Summary Short-term culture of rainbow trout (Onchorhynchus mykiss) hepatocytes was used to examine the effect of dexamethasone (DEX) on microsomal CYP 1A1 protein content and 7-ethoxyresorufin-O-deethylase (EROD) activity in vitro. Hepatocytes prepared by controlled collagenase digestion and plated at a density of 0.25 × 106 cells/cm2 in plastic culture dishes precoated with trout skin extract (7.6 μg skin protein/cm2) to facilitate cell attachment were maintained at 16° C. Cells were treated with DEX (10−9 to 10−7 M) or vehicle (dimethyl sulfoxide, DMSO) at 24 h. Microsomal CYP 1A1 protein content and EROD activities were measured at 72 h. Both CYP 1A1 protein as measured by Western blots using CYP 1A1 specific anti-sera and EROD activity were significantly lower in DEX (10−8 to 10−7 M)-treated hepatocytes compared to untreated (control) or DMSO-treated cells. The effect was dose dependent in that a gradual decrease of CYP 1A1 protein and EROD activities were seen with increasing doses of DEX (10−8 to 10−7 M). DEX at 10−9 M was ineffective. Concomitant addition of 10−6 M RU486, a type II specific glucocorticoid receptor antagonist, to hepatocytes treated with 10−7 M DEX abolished the DEX effect. RU486 at 10−8 M was ineffective. Spironolactone (10−8 to 10−6 M), a type I specific glucocorticoid receptor antagonist, did not counteract the DEX effect. RU486 or spironolactone (10−6 M) alone had no effect on CYP 1A1 under similar conditions. DEX thus down regulates CYP 1A1 in fish cultured hepatocytes and this regulation is mediated through the type II glucocorticoid receptor(s).  相似文献   

9.
Summary Ethanolamine (Etn) stimulates hepatocyte proliferation in vivo and in vitro; however, the physiological function of Etn in hepatocytes has yet to be elucidated. In the present study, we examined the effect of Etn using a primary culture of rat hepatocytes. The level of membrane phosphatidylethanolamine (PE) significantly decreased when the hepatocytes were cultured without Etn but increased to the level found in the liver when the culture medium was supplemented with 20–50 μM Etn. Moreover, Etn stimulated DNA synthesis in a dose-dependent manner and had a synergistic effect with epidermal growth factor (EGF). A binding assay and Western blotting showed that the number of EGF receptors was 22–30% lower in cells grown in the absence of Etn compared to those grown in its presence, but the respective Kd values were almost the same. Furthermore, tyrosine phosphorylation of the EGF receptor was significantly lower in cells grown without Etn. Phosphatidylcholine (PC) synthesis in the liver is unique in that it occurs via stepwise methylation of PE. We found that without Etn supplementation, bezafibrate-induced inhibition of PE methylation increased the level of PE by decreasing its conversion to PC and stimulated DNA synthesis. Moreover, the function of EGF in stimulating DNA synthesis was significantly enhanced under Etn-sufficient conditions. These data suggest that Etn is a nutritional factor required for synthesis of adequate PE, levels of which are important for hepatocyte proliferation.  相似文献   

10.
Monolayer cultures of rat hepatocytes activated tris(2,3-dibromopropyl)phosphate (Tris-BP) more efficiently than 2-acetylaminofluorene (AAF), to genotoxic products which caused mutations in co-cultures of S. typhimurium. In contrast, AAF caused a greater genotoxic response in the hepatocytes than Tris-BP, as judged by the increase in DNA-repair synthesis measured by liquid scintillation counting of 3H-TdR incorporated into DNA isolated from the nuclei of the hepatocytes. Covalent binding of 0.05 mM 3H-Tris-BP to cellular proteins occurred at a similar rate as covalent binding of 0.25 mM 14C-AAF. Tris-BP was the more cytotoxic of the two compounds as determined by leakage of cellular lactate dehydrogenase into the culture medium. The observed differences in the cytotoxic and genotoxic responses between Tris-BP and AAF were probably caused by differences in the nature of their reactive metabolites with respect to stability, lipophilicity and/or their interactions with variuos cellular nucleophilic sites. The relative DNA-repair synthesis induced by an AAF exposure for 18 h decreased with time after plating of isolated hepatocytes. Tris-BP first caused an increase in the relative DNA-repair synthesis up to 27 h after plating, whereafter the response declined reaching control values using cultures 75 h after plating. In parallel with the decreased relative response in DNA-repair synthesis with time, the background radioactivity in isolated nuclei from untreated cells increased both when the hepatocytes were incubated in the presence or absence of hydroxyurea to inhibit replicative DNA synthesis. Increased DNA-repair synthesis was demonstrated as early as 3 h after commencing exposure to the test substances. While the induced DNA-repair synthesis caused by Tris-BP remained constant after 6 h of exposure, the response caused by AAF increased with increased exposure time beyond 6 h. To assess the role of different metabolic pathways in the genotoxic and cytotoxic responses of Tris-BP and AAF, the hepatocytes were exposed to test substances in the presence of various metabolic inhibitors for 3 h, whereafter the cell medium was removed and replaced by cell-culture medium containing 3H-TdR and hydroxyurea. The cytochrome P-450 inhibitor metyrapone decreased both the genotoxic and cytotoxic effects of Tris-BP, while α-naphthoflavone reduced the genotoxic effect of AAF. The addition of glutathione (GSH) or N-acetylcysteine decreased both the cytotoxic and genotoxic effects of Tris-BP, while cellular depletion of GSH by diethylmaleate increased these effects. Manipulations in the cellular levels of sulhydryl-containing substances in the hepatocytes by these agents had little effects on the DNA-repair synthesis caused by AAF. The results indicate that such a hepatocyte culture system may be very useful as a tool to study mechanisms involved in the formation of cytotoxic and/or genotoxic metabolites from various xenobiotics.  相似文献   

11.
Alkaline sucrose sedimentation studies of DNA from mouse L cells have demonstrated the following effects of several inhibitors of nucleic acid and protein synthesis on postreplication repair of ultraviolet (UV) damage to their DNA. The DNA newly synthesized by a 2 h [3H]thymidine (dThd) label following 254 nm UV irradiation of 20 J/m2 is made in smaller segments of the number average mol wt (Mn) of ~10 × 106 than the control of ~40 × 106. The presence of caffeine at a concentration of 2 mM during the labeling of the irradiated cells reduces the Mn value to 5.8 × 106, which is nearly comparable to, but somewhat larger than the expected distance between dimers in parental DNA. Afterwards, such an interrupted DNA made in the irradiated cells is completely repaired to the present maximum Mn value of 40 × 106 in the consecutive 4 h chase in unlabeled dThd. The presence of the nucleic acid inhibitor, either 2 mM hydroxyurea, 50 μM arabinofuranosyl cytosine, 2 mM excess dThd or 5 μg/ml of actinomycin D (AMD) during 2- to 24-h chase periods after a 2 h postirradiation label prevents the repair to various extents, while 2 mM caffeine completely inhibits it. In the unirradiated cells, these agents except excess dThd and caffeine also interfere severely with normal elongation of nascent DNA made by a 3 min pulse label, but do not appreciably induce single chain breaks of either newly synthesized or parental DNA. The inhibition of the repair by AMD suggests that de novo elongation of DNA to close the gaps in new DNA made in the irradiated cells requires at least a template-dependent DNA polymerase. In contrast, 100 μg/ml of cycloheximide allows to complete the gap-filling repair, while it simply reduces the rates of chain growth for the repair and normal replication. Therefore, the similar sensitivity of gap-filling repair and normal replication towards the above inhibitors indicates that a preexisting DNA polymerizing system appears to be responsible and to play a common role without new protein synthesis, as far as the repair at early time after UV is concerned.  相似文献   

12.
Summary Late gestation fetal rat hepatocytes can proliferate under defined in vitro conditions in the absence of added mitogens. However, this capacity declines with advancing gestational age of the fetus from which the hepatocytes are derived. The present studies were undertaken to investigate this change in fetal hepatocyte growth regulation. Examination of E19 fetal hepatocyte primary cultures using immunocytochemistry for 5-bromo-2′-deoxyuridine (BrdU) incorporation showed that approximately 80% of these cells traverse S-phase of the cell cycle over the first 48 h in culture. Similarly, 65% of E19 hepatocytes maintained in culture under defined mitogen-free conditions for 24 h showed nuclear expression of proliferating cell nuclear antigen (PCNA). These in vitro findings correlated with a high level of immunoreactive PCNA in immunofluorescent analyses of E19 liver. In contrast, E21 (term) liver showed little immunoreactive PCNA. The in vivo finding was recapitulated by in vitro studies showing that E21 hepatocytes had low levels of BrdU incorporation during the first day in culture and were PCNA negative shortly after isolation. However, within 12 h of plating, E21 hepatocytes showed cytoplasmic staining for PCNA. Although maintained under mitogen-free conditions, PCNA expression progressed synchronously to a nucleolar staining pattern at 24 to 48 h in culture followed by intense, diffuse nuclear staining at 60 h which disappeared by 72 h. This apparently synchronous cell cycle progression was confirmed by studies showing peak BrdU incorporation on the third day in culture. Whereas DNA synthesis by both E19 and E21 hepatocytes was potentiated by transforming growth factor α (TGFα), considerable mitogen-independent DNA synthesis was seen in hepatocytes from both gestational ages. These results may indicate that fetal hepatocytes come under the influence of an exogenous, in vivo growth inhibitory factor as term approaches and that this effect is relieved when term fetal hepatocytes are cultured.  相似文献   

13.
A copolymer, including a Gly-Arg-Gly-Asp-Ser (GRGDS) sequence and sugar moieties, was synthesized for the culturing of parenchymal cells (hepatocytes). Hepatocyte cells attached to poly[N-p-vinylbenzyl-d-maltonamide-co-6-(p-vinylbenzamido)-hexanoic acid-GRGDS] [poly(VMA-co-VBRGD)]-coated dishes grew approximately 60% better than on other polymer-coated surface for 12 h. Also, about 80% greater albumin secretion (0.38 pg ml–1) and about 70% greater urea synthesis (0.495 pg ml–1) from hepatocytes were produced in this matrix as compared with unstimulated cells. The behaviour of hepatocytes on poly(VMA-co-VBGRGDS)-coated dishes was not distinct from those attached to a collagen. The conjugation of the adhesion molecules of the RGD peptide in the poly(VMA-co-VBGRGDS) copolymer therefore specifically interacts with integrin families on the hepatocyte cell membrane.  相似文献   

14.
Brain serotonin (5-HT) modulates the neural effects of ethanol. In the present study, we investigated the changes in 5-HT level, 5-HT2A receptor binding and aldehyde dehydrogenase (ALDH) activity in brain stem and liver of ethanol treated rats and 5-HT2A regulation on ALDH in hepatocyte cultures in vitro. The 5-HT content in the brain stem and liver significantly decreased with an increased 5-HIAA/5-HT ratio in the ethanol treated rats compared to control. Scatchard analysis of [3H] (±)2,3-dimethoxyphenyl-1-[2-(-4-piperidine)-methanol] [3H] MDL 100907 against ketanserin in brain stem of ethanol treated rats showed a significant increase in B max without any change in K d compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in both control and ethanol treated rats with unity as Hill slope value. A significant increase in V max of ALDH activity in liver and a significant decrease in K m in liver and brain stem of ethanol treated rats compared to control was observed. In 24 h culture studies, an increase in enzyme activity was observed in cells in medium with 10% ethanol. The elevated ALDH activity in ethanol treated cells was reversed to control level in presence of 10−5 and 10−7 M 5-HT. Ketanserin, an antagonist of 5-HT2A, reversed the effect of 5HT on 10% ethanol induced ALDH activity in hepatocytes. Our results showed that there was a decreased 5-HT content with an enhanced 5-HT2A receptor and aldehyde dehydrogenase activity in the brain stem of alcohol treated rats and in vitro hepatocyte cultures. The enhanced ALDH activity in ethanol supplemented hepatocytes was reversed to control level in presence of 10−5 and 10−7 M 5-HT.  相似文献   

15.
Summary The presence of gamma-glutamyl transpeptidase (GGT) in focal nodules of hepatocytes is a commonly used marker for the identification of preneoplastic cell populations. Female Fischer 344 rats were initiated with a single intragastric administration of 200 mg diethylnitrosamine/kg, altered cells were selected after 0.02% 2-acetylaminofluorene was given in the diet; this was followed by a partial hepatectomy and promotion with dietary sodium phenobarbital for 4 wk. A mixed-cell population of GGT-positive and GGT-negative hepatocytes was obtained after collagenase perfusion and Percoll purification. An enriched population of GGT-positive hepatocytes was obtained by a modified “panning” technique. With quantitative scintillation spectrometry and autoradiography of [3H]thymidine incorporation, replicative DNA synthesis of GGT-positive and GGT-negative rat hepatocytes was observed in both the mixed-cell population and the enriched GGT-positive and GGT-negative cell populations. Under the culture conditions used, GGT-positive cells showed a higher level of replicative DNA synthesis than did GGT-negative cells; this indicates that such altered hepatocytes in the stage of promotion possess an inherently greater capacity for all replication, as previously suggested from studies in vivo.  相似文献   

16.
Density-dependent growth control of adult rat hepatocytes in primary culture   总被引:11,自引:0,他引:11  
Adult rat hepatocytes in primary culture, which show various liver functions, did not show any mitosis at confluent cell density, although they entered the S phase and remained in the G2 phase, judging by cytofluorometry, when insulin and epidermal growth factor (EGF) were added to 2-day cultures (Tomita, Y., Nakamura, T., & Ichihara, A. (1981) Exp. Cell Res. 135, 363-371). However, when the cell density was decreased by half or one third, the number of nuclei and cell number increased to 1.5-2.0 times that after culture for 35 h with insulin and EGF. Moreover, at these lower densities, DNA synthesis started much earlier, although at the usual high density DNA synthesis with these two hormones did not start until the hepatocytes had been cultured for over 40 h. These results suggest that proliferation of mature rat hepatocytes is regulated by the cell density. First, cells in G0 enter the G1 phase density-dependently; then cells in the G1 phase seem to be stimulated to enter the S phase by insulin and EGF, and a low cell density may permit cells after DNA synthesis to enter the M phase. DNA synthesis of rat hepatocyte cultures at low cell density was strongly inhibited by co-culture with a dense culture. Therefore, the density-dependent mechanism of hepatocyte proliferation seems to involve regulation by a soluble inhibitor(s) secreted by the hepatocytes into the culture medium.  相似文献   

17.
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGFβ1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10−4 M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGFβ1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.  相似文献   

18.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   

19.
Summary A method is described for the attachment to and monolayer culture of adult rat hepatocytes on collagen-coated or fibronectin-coated microbeads or both in a chemically defined serum-free medium. Protein synthesis measured by the incorporation of [3H]leucine into protein was four-fold higher in the hepatocyte microcarrier cultures than in isolated hepatocyte suspensions. The hepatocyte microcarrier cultures showed acute responsiveness to insulin of fatty acid synthesis, glucose incorporation into glycogen, and decarboxylation of [1-14C]pyruvate. Microcarrier-cultured hepatocytes have the combined advantages of monolayer culture and suspension systems. They are a potential tool for the study of long-term as well as acute effects of hormones. This work was supported by the British Diabetic Association.  相似文献   

20.
Feasibility of using a macroporous membrane material, expanded polytetrafluoroethylene (ePTFE), for culturing hepatocytes on its surface was examined. Adult rat hepatocytes were attached to an ePTFE surface and cultured in a hormonally defined medium supplemented with or without fetal calf serum (FCS, 10%) or bovine serum albumin (BSA, 0.03–3%). When cultured in a FCS-suplemented medium, hepatocytes reorganized themselves into multilayer cell aggregates on an ePTFE surface. The morphological characteristics of hepatocytes were influenced by the modification of the ePTFE surface as well as the culture medium. Hepatocytes cultured on a polyvinylalcohol (PVA)-coated ePTFE surface formed many more multilayer cell aggregates than those cultured on an uncoated ePTFE surface. Such highly multilayered hepatocyte aggregates were also noted when the cells were cultivated in a BSA-supplemented medium. On the other hand, when cultured in a FCS- or BSA-free medium, hepatocytes formed cell monolayers on both PVA-coated and uncoated ePTFE surfaces as did the cells on a collagen-coated polystyrene surface. The hepatocytes in the aggregates exhibited high albumin expression capability and low DNA synthesis rate as compared with those in monolayer cultures. The multilayer hepatocyte aggregates, as immobilized on a PVA-coated ePTFE surface in a serum-supplemented medium, are shown to be not only morphologically, but functionally differentiated, and will provide us a model system for the development of a bioreactor using hepatocytes, particularly for a hybrid-type artificial liver. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号