首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. D. Hudson  H. Feilotter    P. G. Young 《Genetics》1990,126(2):309-315
In Schizosaccharomyces pombe, cdc25 is a cell cycle regulated inducer of mitosis. wee1 and phenotypically wee alleles of cdc2 are epistatic to cdc25. Mutant alleles of a new locus, stf1 (suppressor of twenty-five), identified in a reversion analysis of conditionally lethal cdr1-76 cdc25-22 and cdr2-96 cdc25-22 double mutant strains, also suppress both temperature-sensitive and gene disruption alleles of cdc25. These mutants, by themselves, are phenotypically indistinguishable from wild type strains; hence they represent the first known mutations that are epistatic to cdc25 and do not display a wee phenotype. stf1 genetically interacts with other elements of mitotic control in S. pombe. stf1-1 is additive with wee1-50, cdc2-1w and cdc2-3w for suppression of cdc25-22. Also, like wee1- and cdc2-w, stf1- suppression of cdc25 is reversed by overexpression of the putative type 1 protein phosphatase bws1+/dis2+. Interaction with various mutants and plasmid overexpression experiments suggest that stf1 does not operate either upstream or downstream of wee1. Similarly, it does not operate through cdc25 since it rescues the disruption. stf1 appears to encode an important new element of mitotic control.  相似文献   

2.
Cdc2 and the Regulation of Mitosis: Six Interacting Mcs Genes   总被引:10,自引:2,他引:8       下载免费PDF全文
L. Molz  R. Booher  P. Young    D. Beach 《Genetics》1989,122(4):773-782
A cdc2-3w weel-50 double mutant of fission yeast displays a temperature-sensitive lethal phenotype that is associated with gross abnormalities of chromosome segregation and has been termed mitotic catastrophe. In order to identify new genetic elements that might interact with the cdc2 protein kinase in the regulation of mitosis, we have isolated revertants of the lethal double mutant. The suppressor mutations define six mcs genes (mcs: mitotic catastrophe suppressor) that are not allelic to any of the following mitotic control genes: cdc2, wee 1, cdc13, cdc25, suc1 or nim1. Each mcs mutation is recessive with respect to wild-type in its ability to suppress mitotic catastrophe. None confer a lethal phenotype as a single mutant but few of the mutants are expected to be nulls. A diverse range of genetic interactions between the mcs mutants and other mitotic regulators were uncovered, including the following examples. First, mcs2 cdc2w or mcs6 cdc2w double mutants display a cell cycle defect dependent on the specific wee allele of cdc2. Second, both mcs1 cdc25-22 or mcs4 cdc25-22 double mutants are nonconditionally lethal, even at a temperature normally permissive for cdc25-22. Finally, the characteristic suppression of the cdc25 phenotype by a loss-of-function wee1 mutation is reversed in a mcs3 mutant background. The mcs genes define new mitotic elements that might be activators or substrates of the cdc2 protein kinase.  相似文献   

3.
Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog   总被引:120,自引:0,他引:120  
P Russell  P Nurse 《Cell》1987,49(4):559-567
Fission yeast wee1- mutants initiate mitosis at half the cell size of wild type. The wee1+ activity is required to prevent lethal premature mitosis in cells that overproduce the mitotic inducer cdc25+. This lethal phenotype was used to clone wee1+ by complementation. When wee1+ expression is increased, mitosis is delayed until cells grow to a larger size. Thus wee1+ functions as a dose-dependent inhibitor of mitosis, the first such element to be specifically identified and cloned. The carboxy-terminal region of the predicted 112 kd wee1+ protein contains protein kinase consensus sequences, suggesting that negative regulation of mitosis involves protein phosphorylation. Genetic evidence indicates that wee1+ and cdc25+ compete in a control system regulating the cdc2+ protein kinase, which is required for mitotic initiation.  相似文献   

4.
mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2.   总被引:121,自引:0,他引:121  
wee1 acts antagonistically to cdc25 in the tyrosine dephosphorylation and activation of cdc2, yet biochemical evidence suggests that wee1 is not required for tyrosine phosphorylation and its role is obscure. We show here that a related 66 kd kinase, called mik1, acts redundantly with wee1 in the negative regulation of cdc2 in S. pombe. A null allele of mik1 has no discernible phenotype, but a mik1 wee1 double mutant is hypermitotically lethal: all normal M phase checkpoints are bypassed, including the requirement for initiation of cell cycle "start," completion of S phase, and function of the cdc25+ mitotic activator. In the absence of mik1 and wee1 activity, cdc2 rapidly loses phosphate on tyrosine, both in strains undergoing mitotic lethality and in those that are viable owing to a compensating mutation within cdc2. The data suggest that mik1 and wee1 act cooperatively on cdc2, either directly as the inhibitory tyrosine kinase or as essential activators of that kinase.  相似文献   

5.
Hyperactivation of Cdc2 in fission yeast causes cells to undergo a lethal premature mitosis, a phenomenon called mitotic catastrophe. This phenotype is observed in cdc2-3w wee1-50 cells at high temperature and is suppressed by a single recessive mutant, mcs3-12. Mcs3 acts independently of the Wee1 kinase and Cdc25 phosphatase, two major regulators of Cdc2. We have isolated multicopy suppressors of the cell cycle arrest phenotype of mcs3-12 wee1-50 cdc25-22 cells, but did not identify the mcs3 gene itself. Instead several known mitotic regulators were isolated, including the Cdc25 phosphatase, Wis2 cyclophilin, Cek1 kinase, and an Hsp90 homologue, Swo1. We also isolated clones encoding non-functional, truncated forms of the Wee1 kinase and Dis2 type 1 phosphatase. In addition we identified a multicopy suppressor that encodes a structural homologue of the budding yeast SPO12 gene. We find that overexpression of fission yeast spo12 not only suppresses the phenotype of the mcs3-12 wee1-50 cdc25-22 strain, but also that of a win1-1 wee1-50 cdc25-22 strain at high temperature, indicating that the function of spo12 is not directly related to mcs3. We show that spo12 mRNA is periodically expressed during the fission yeast cell cycle, peaking at the G2/M transition coincidently with cdc15. Deletion of spo12, however, has no overt effect on either the mitotic or meiotic cell cycles, except when the function of the major B type cyclin, Cdc13, is compromised.  相似文献   

6.
G. Cottarel 《Genetics》1997,147(3):1043-1051
The Schizosaccharomyces pombe cdc2-3w wee1-50 double mutant displays a temperature-sensitive lethal phenotype termed mitotic catastrophe. Six mitotic catastrophe suppressor (mcs1-6) genes were identified in a genetic screen designed to identify regulators of cdc2. Mutations in mcs1-6 suppress the cdc2-3w wee1-50 temperature-sensitive growth defect. Here, the cloning of mcs4 is described. The mcs4 gene product displays significant sequence homology to members of the two-component system response regulator protein family. Strains carrying the mcs4 and cdc25 mutations display a synthetic osmotic lethal phenotype along with an inability to grow on minimal synthetic medium. These phenotypes are suppressed by a mutation in wee1. In addition, the wis1 gene, encoding a stress-activated mitogen-activated protein kinase kinase, was identified as a dosage suppressor in this screen. These findings link the two-component signal transduction system to stress response and cell cycle control in S. pombe.  相似文献   

7.
P Russell  P Nurse 《Cell》1987,49(4):569-576
The newly discovered fission yeast mitotic control element nim1+ (new inducer of mitosis) is the first dose-dependent mitotic inducer identified as a protein kinase homolog. Increased nim1+ expression rescues mutants lacking the mitotic inducer cdc25+ and advances cells into mitosis at a reduced cell size; loss of nim1+ delays mitosis until cells have grown to a larger size. The nim1+ gene potentially encodes a 50 kd protein that contains the consensus sequences of protein kinases. Genetic evidence indicates that nim1+ is a negative regulator of the wee1+ mitotic inhibitor, another protein kinase homolog. The combined mitotic induction activities of nim1+ and cdc25+ counteract the wee1+ mitotic inhibitor in a regulatory network that appears also to involve the cdc2+ protein kinase, which is required for mitosis.  相似文献   

8.
H. Feilotter  P. Nurse    P. G. Young 《Genetics》1991,127(2):309-318
The cdr1 gene in Schizosaccharomyces pombe was identified as a mutation affecting the nutritional responsiveness of the mitotic size control. cdr1 alleles have been further analyzed for genetic interactions with elements of the mitotic control pathway and cloned by plasmid rescue of a conditional lethal cdr1-76 cdc25-22 double mutant. These analyses show that the cdr1 gene is allelic to nim1, a gene identified as a high copy number plasmid suppressor of the mitotic control gene, cdc25. The gene structure for cdr1 differs from the described nim1 gene in the carboxyl-terminal portion of the gene. The published nim1 sequence encoded a product of predicted Mr 45,000, and included 356 amino acids from the amino-terminal region of the gene and 14 amino acids from a noncontiguous carboxyl-terminal fragment. The cdr1 sequence includes an additional 237 amino acids of the contiguous fragment and encodes a product of predicted Mr 67,000. The sequence shows a high level of identity with protein kinases over the amino-terminal catalytic domain, and limited identity with yeast protein kinases SNF1, KIN2 and KIN1 over part of the carboxyl-terminal domain. The effect of overexpression of the full length gene has been examined in various genetic backgrounds. These data show that the full length gene product is required to give a normal cell cycle response to nitrogen starvation. A detailed examination of the genetic interaction of cdr1 mutants with various mutants of mitotic control genes (cdc2, cdc25, wee1, cdc13) demonstrated strong interactions with cdc25, some cdc2 alleles, and with cdc13-117. Overall, the results are interpretable within the framework of the existing model of cdr1/nim1 action in mitotic control, i.e., cdr1 functions upstream of wee1 to relieve mitotic inhibition.  相似文献   

9.
Entry into mitosis is catalyzed by cdc2 kinase. Previous work identified the cdc2-activating phosphatase cdc25C and the cdc2-inhibitory kinase wee1 as targets of the incomplete replication-induced kinase Chk1. Further work led to the model that checkpoint kinases block mitotic entry by inhibiting cdc25C through phosphorylation on Ser287 and activating wee1 through phosphorylation on Ser549. However, almost all conclusions underlying this idea were drawn from work using recombinant proteins. Here, we report that in the early Xenopus egg cell cycles, phosphorylation of endogenous cdc25C Ser287 is normally high during interphase and shows no obvious increase after checkpoint activation. By contrast, endogenous wee1 Ser549 phosphorylation is low during interphase and increases after activation of either the DNA damage or replication checkpoints; this is accompanied by a slight increase in wee1 kinase activity. Blocking mitotic entry by adding the catalytic subunit of PKA also results in increased wee1 Ser549 phosphorylation and maintenance of cdc25C Ser287 phosphorylation. These results argue that in response to checkpoint activation, endogenous wee1 is indeed a critical responder that functions by repressing the cdc2-cdc25C positive feedback loop. Surprisingly, endogenous wee1 Ser549 phosphorylation is highest during mitosis just after the peak of cdc2 activity. Treatments that block inactivation of cdc2 result in further increases in wee1 Ser549 phosphorylation, suggesting a previously unsuspected role for wee1 in mitosis.  相似文献   

10.
Previously known cell size (wee) mutations of fission yeast suppress the mitotic block caused by a defective cdc25 allele. Some 700 revertants of cdc25-22 were obtained after ultraviolet mutagenesis and selection at the restrictive temperature. Most revertants carried the original cdc25 lesion plus a mutation in or very close to the wee1 gene. Two partial wee1 mutations of a new type were found among the revertants. Two new wee mutations mapping at the cdc2 gene (cdc2-w mutants) were also obtained. The various mutations were examined for their effects on cell division size, their efficiency as cdc25 suppressors, and their dominance relations. Full wee1 mutations were found to suppress cdc25 lesions very efficiently, whereas partial wee1 mutations were poor suppressors. The cdc25 suppression ability of cdc2-w mutations was allele specific for cdc2, suggesting bifunctionality of the gene product. The wee1 mutations were recessive for cdc25 suppression; cdc2-w mutations were dominant. A model is proposed for the genetic control of mitotic timing and cell division size, in which the cdc2+ product is needed and is rate limiting for mitosis. The cdc2+ activity is inhibited by the wee1+ product, whereas the cdc25+ product relieves this inhibition.  相似文献   

11.
The decision to enter mitosis   总被引:31,自引:0,他引:31  
The phosphotyrosine content of the cdc2 protein kinases, the catalytic component of maturation-promoting factor (MPF), is an important parameter of mitotic regulation in a variety of organisms. Recent studies have shed considerable light on how the cdc2-specific tyrosine kinase (wee1) and its competing phosphatase (cdc25) are regulated during the cell cycle. A goal for the future will be to obtain a comprehensive picture of how the wee1-cdc25 regulatory system collaborates with other steps in mitotic activation to ensure that cell division occurs at the appropriate time during the cell cycle.  相似文献   

12.
Pyp3 PTPase acts as a mitotic inducer in fission yeast.   总被引:10,自引:3,他引:7       下载免费PDF全文
J B Millar  G Lenaers    P Russell 《The EMBO journal》1992,11(13):4933-4941
The p34cdc2 M-phase kinase is regulated by inhibitory phosphorylation of Tyr15, largely through the actions of the p107wee1 tyrosine kinase and p80cdc25 protein tyrosine phosphatase (PTPase). In this study we demonstrate that a second PTPase, encoded by pyp3, also contributes to tyrosyl dephosphorylation of p34cdc2. Pyp3 was identified as a high copy suppressor of a cdc25- mutation. The pyp3 gene encodes a 33 kDa PTPase that is more closely related to human PTP1B and fission yeast pyp1 and pyp2 PTPases than to cdc25. Pyp3 does not share an essential overlapping function with pyp1 or pyp2. We demonstrate that disruption of pyp3 causes a mitotic delay that is greatly exacerbated in cells that are partially defective for cdc25 function and that pyp3 function is essential in cdc25-disruption wee1- strains. Pyp3 PTPase effectively dephosphorylates and activates the p34cdc2 kinase in vitro. We conclude that the pyp3 PTPase acts cooperatively with p80cdc25 to dephosphorylate Tyr15 of p34cdc2.  相似文献   

13.
J B Millar  P Russell  J E Dixon    K L Guan 《The EMBO journal》1992,11(13):4943-4952
We have identified a third protein tyrosine phosphatase (PTPase) gene in fission yeast, pyp2, encoding an 85 kDa protein. Disruption of pyp2 has no impact on cell viability, but pyp2 is essential in strains lacking the 60 kDa pyp1 PTPase. The two pyp PTPases are approximately 42% identical in their C-terminal catalytic domains and share weak homology in their N-terminal regions. Both genes play a role in inhibiting the onset of mitosis. Disruption of either gene rescues the G2 arrest caused by mutation of the cdc25 mitotic inducer, though the effect of pyp1-disruption is more pronounced. Disruption of pyp1 advances mitosis, suppresses overexpression of the tyrosine kinase encoded by the wee1 mitotic inhibitor, and causes lethal mitotic catastrophe in cdc25 overproducer cells. Cells bearing inactive wee1 are unresponsive to disruption of pyp1. Overexpression of pyp1 or pyp2 delays the onset of mitosis by a wee1-dependent mechanism. These data reveal an unexpected second role for protein tyrosine phosphorylation in the mitotic control that acts by promoting the inhibitory wee1 pathway.  相似文献   

14.
Conservation of mitotic controls in fission and budding yeasts   总被引:45,自引:0,他引:45  
P Russell  S Moreno  S I Reed 《Cell》1989,57(2):295-303
In fission yeast, the initiation of mitosis is regulated by a control network that integrates the opposing activities of mitotic inducers and inhibitors. To evaluate whether this control system is likely to be conserved among eukaryotes, we have investigated whether a similar mitotic control operates in the distantly related budding yeast S. cerevisiae. We have found that the protein kinase encoded by the mitotic inhibitor gene wee1+ of fission yeast, which acts to delay mitosis, is able also to delay the initiation of mitosis when expressed in S. cerevisiae. The wee1+ activity is counteracted in S. cerevisiae by the gene product of MIH1, a newly identified gene capable of encoding a protein of MW 54,000, which is a structural and functional homolog of the cdc25+ mitotic inducer of fission yeast. Expression of wee1+ in a mih1- strain prevents the initiation of mitosis. These data indicate that important features of the cdc25+-wee1+ mitotic control network identified in S. pombe are conserved in S. cerevisiae, and therefore are also likely to be generally conserved among eukaryotic organisms.  相似文献   

15.
cdc25+ functions as an inducer in the mitotic control of fission yeast   总被引:114,自引:0,他引:114  
P Russell  P Nurse 《Cell》1986,45(1):145-153
In the fission yeast S. pombe the cdc25+ gene function is required to initiate mitosis. We have cloned the cdc25+ gene and have found that increased cdc25+ expression causes mitosis to initiate at a reduced cell size. This shows that cdc25+ functions as a dosage-dependent inducer in mitotic control, the first such mitotic control element to be specifically identified. DNA sequencing of the cdc25+ gene has shown that it can encode a protein of MW 67,000. Evidence is described showing that cdc25+ functions to counteract the activity of the mitotic inhibitor wee1+, and indicating that both mitotic control elements act independently to regulate the initiation of mitosis.  相似文献   

16.
Cdc25A is a novel phosphatase functioning early in the cell cycle.   总被引:30,自引:3,他引:27       下载免费PDF全文
The cdc25+ tyrosine phosphatase is a key mitotic inducer of the fission yeast Schizosaccharomyces pombe, controlling the timing of the initiation of mitosis. Mammals contain at least three cdc25+ homologues called cdc25A, cdc25B and cdc25C. In this study we investigate the biological function of cdc25A. Although very potent in rescuing the S.pombe cdc25 mutant, cdc25A is less structurally related to the S.pombe enzyme. Northern and Western blotting detection reveals that unlike cdc25B, cdc25C and cdc2, cdc25A is predominantly expressed in late G1. Moreover, immunodepletion of cdc25A in rat cells by microinjection of a specific antibody effectively blocks their cell cycle progression from G1 into the S phase, as determined by laser scanning single cell cytometry. These results indicate that cdc25A is not a mitotic regulator but a novel phosphatase that plays a crucial role in the start of the cell cycle. In view of its strong ability to activate cdc2 kinase and its specific expression in late G1, cdc2-related kinases functioning early in the cell cycle may be targets for this phosphatase.  相似文献   

17.
Spc1 in Schizosaccharomyces pombe is a member of the stress-activated protein kinase family, an evolutionary conserved subfamily of mitogen-activated protein kinases (MAPKs). Spc1 is activated by a MAPK kinase homologue, Wis1, and negatively regulated by Pyp1 and Pyp2 tyrosine phosphatases. Mutations in the spc1+ and wis1+ genes cause a G2 cell cycle delay that is exacerbated during stress. Herein, we describe two upstream regulators of the Wis1-Spc1 cascade. wik1+ (Wis1 kinase) was identified from its homology to budding yeast SSK2, which encodes a MAPKK kinase that regulates the HOG1 osmosensing pathway. Delta wik1 cells are impaired in stress-induced activation of Spc1 and show a G2 cell cycle delay and osmosensitive growth. Moreover, overproduction of a constitutively active form of Wik1 induces hyperactivation of Spc1 in wis1(+)-dependent manner, suggesting that Wik1 regulates Spc1 through activation of Wis1. A mutation of mcs4+ (mitotic catastrophe suppressor) was originally isolated as a suppressor of the mitotic catastrophe phenotype of a cdc2-3w wee1-50 double mutant. We have found that mcs4- cells are defective at activation of Spc1 in response to various forms of stress. Epistasis analysis has placed Mcs4-upstream of Wik1 in the Spc1 activation cascade. These results indicate that Mcs4 is part of a sensor system for multiple environmental signals that modulates the timing of entry into mitosis by regulating the Wik1-Wis1-Spc1 kinase cascade. Inactivation of the sensor system delays the onset of mitosis and rescues lethal premature mitosis in cdc2-3w wee1-50 cells.  相似文献   

18.
The fission yeast mutant dis3-54 is defective in mitosis and fails in chromosome disjunction. Its phenotype is similar to that of dis2-11, a mutant with a mutation in the type 1 protein phosphatase gene. We cloned the dis3+ gene by transformation. Nucleotide sequencing predicts a coding region of 970 amino acids interrupted by a 164-bp intron at the 65th codon. The predicted dis3+ protein shares a weak but significant similarity with the budding yeast SSD1 or SRK1 gene product, the gene for which is a suppressor for the absence of a protein phosphatase SIT4 gene or the BCY1 regulatory subunit of cyclic AMP-dependent protein kinase. Anti-dis3 antibodies recognized the 110-kDa dis3+ gene product, which is part of a 250- to 350-kDa oligomer and is enriched in the nucleus. The cellular localization of the dis3+ protein is reminiscent of that of the dis2+ protein, but these two proteins do not form a complex. A type 1 protein phosphatase activity in the dis3-54 mutant extracts is apparently not affected. The dis3+ gene is essential for growth; gene disruptant cells do not germinate and fail in cell division. Increased dis3+ gene dosage reverses the Ts+ phenotype of a cdc25 wee1 strain, as does increased type 1 protein phosphatase gene dosage. Double mutant dis3 dis2 is lethal even at the permissive temperature, suggesting that the dis2+ and dis3+ genes may be functionally overlapped. The role of the dis3+ gene product in mitosis is unknown, but this gene product may be directly or indirectly involved in the regulation of mitosis.  相似文献   

19.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

20.
E Warbrick  P A Fantes 《The EMBO journal》1991,10(13):4291-4299
The wis1+ gene encodes a newly identified mitotic control element in Schizosaccharomyces pombe. It was isolated by virtue of its interaction with the mitotic control genes cdc25, wee1 and win1. The wis1+ gene potentially encodes a 66 kDa protein with homology to the serine/threonine family of protein kinases. wis1+ plays an important role in the regulation of entry into mitosis, as it shares with cdc25+ and nim1+/cdr1+ the property of inducing mitosis in a dosage-dependent manner. Increased levels of wis1+ expression cause mitotic initiation to occur at a reduced cell size. Loss of wis1+ function does not prevent vegetative growth and division, though wis1- cells show an elongated morphology, indicating that their entry into mitosis and cell division is delayed relative to wild type cells. wis1- cells undergo a rapid reduction of viability upon entry into stationary phase, suggesting a role for wis1+ in the integration of nutritional sensing with the control over entry into mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号