首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of iodine with glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus was investigated. The active-site thiol group of the cysteine residue homologous with cysteine-149 in the pig muscle enzyme was protected by reaction with tetrathionate. The apoenzyme was readily inhibited by KI3 solution at pH8, but the coenzyme, NAD+, protected the enzyme against inhibition and decreased the extent of iodination. At pH 9.5, ready inhibition of both apo- and holo-enzyme was observed. Tryptic peptides containing residues iodinated at pH 8 were isolated and characterized. One of the most reactive residues in both holo- and apo-enzymes was a tyrosine homologous with tyrosine-46 in the pig muscle enzyme, and this residue was iodinated without loss of enzymic activity. Other reactive tyrosine residues in the apoenzyme were in positions homologous with residues 178, 273, 283 and 311 in the pig muscle enzyme, but they were not readily iodinated in the holoenzyme. Histidine residues in both holo- and apo-enzymes were iodinated at pH 8 in sequence positions homologous with residues 50, 162 and 190 in the pig muscle enzyme. The inhibition of the enzyme was not correlated with the iodination of a particular residue. The results are discussed in relation to a three-dimensional model based on the structure of the lobster muscle enzyme and demonstrate that conformational changes affecting the reactivity of several tyrosine residues most probably occur on binding of the coenzyme.  相似文献   

2.
Inactivation of apo-glyceraldehyde-3-phosphate dehydrogenase from rat skeletal muscle in the presence of butanedione is the result of modification of one arginyl residue per subunit of the tetrameric enzyme molecule. The loss of activity follows pseudo-first-order kinetics. NAD+ increases the apparent first-order rate constant of inactivation. The effect of NAD+ on the enzyme inactivation is cooperative (Hill coefficient = 2.3--3.2). Glyceraldehyde 3-phosphate protected the holoenzyme against inactivation, decreasing the rate constant of the reaction. At saturating concentrations of substrate the protection was complete. The Hill plot demonstrates that the effect is cooperative. This suggests that subunit interactions in the tetrameric holoenzyme molecule may affect the reactivity of the essential arginyl residues. In contrast, glyceraldehyde 3-phosphate had no effect on the rate of inactivation of the apoenzyme in the presence of butanedione. 100 mM inorganic phosphate protected both the apoenzyme and holoenzyme against inactivation. The involvement of the microenvironment of the arginyl residues in the functionally important conformational changes of the enzyme is discussed.  相似文献   

3.
UDPglucose 4-epimerase from Kluyveromyces fragilis was completely inactivated by diethylpyrocarbonate following pseudo-first order reaction kinetics. The pH profile of diethylpyrocarbonate inhibition and reversal of inhibition by hydroxylamine suggested specific modification of histidyl residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of 1 essential histidine residue to be responsible for loss in catalytic activity of yeast epimerase. No major structural change in the quarternary structure was observed in the modified enzyme as shown by the identical elution pattern on a calibrated Sephacryl 200 column and association of coenzyme NAD to the apoenzyme. Failure of the substrates to afford any protection against diethylpyrocarbonate inactivation indicated the absence of the essential histidyl residue at the substrate binding region of the active site. Unlike the case of native enzyme, sodium borohydride failed to reduce the pyridine moiety of the coenzyme in the diethylpyrocarbonate-modified enzyme. This indicated the presence of the essential histidyl residue in close proximity to the coenzyme binding region of the active site. The abolition of energy transfer phenomenon between the tryptophan and coenzyme fluorophore on complete inactivation by diethylpyrocarbonate without any loss of protein or coenzyme fluorescence are also added evidences in this direction.  相似文献   

4.
1. Pig heart lactate dehydrogenase is inhibited by addition of one equivalent of diethyl pyrocarbonate. The inhibition is due to the acylation of a unique histidine residue which is 10-fold more reactive than free histidine. No other amino acid side chains are modified. 2. The carbethoxyhistidine residue slowly decomposes and the enzyme activity reappears. 3. The essential histidine residue is only slightly protected by the presence of NADH but is completely protected when substrate and substrate analogues bind to the enzyme-NADH complex. The protection is interpreted in terms of a model in which substrates can only bind to the enzyme in which the histidine residue is protonated and is thus not available for reaction with the acylating agent. 4. The apparent pK(a) of the histidine residue in the apoenzyme is 6.8+/-0.2. In the enzyme-NADH complex it is 6.7+/-0.2. 5. Acylated enzyme binds NADH with unchanged affinity. The enzyme is inhibited because substrates and substrate analogues cannot bind at the acylated histidine residue in the enzyme-NADH complex.  相似文献   

5.
The phosphoglucosamine mutase (GlmM) from Escherichia coli, specifically required for the interconversion of glucosamine-6-phosphate and glucosamine-1-phosphate (an essential step in the pathway for cell-wall peptidoglycan and lipopolysaccharide biosyntheses) was purified to homogeneity and its kinetic properties were investigated. The enzyme was active in a phosphorylated form and catalysed its reaction according to a classical ping-pong bi-bi mechanism. The dephosphorylated and phosphorylated forms of GlmM could be separated by HPLC and coupled MS showed that only one phosphate was covalently linked to the active site of the enzyme. The site of phosphorylation was clearly identified as Ser102 in the 445-amino acid polypeptide. GlmM was also capable of catalysing the interconversion of glucose-1-phosphate and glucose-6-phosphate isomers, although at a much lower (1400-fold) rate. Interestingly, the mutational change of the Ser100 to a threonine residue resulted in a 20-fold increase of the nonspecific phosphoglucomutase activity of GlmM, suggesting that the presence of either a serine or a threonine at this position in the consensus sequence of hexosephosphate mutases could be one of the factors that determines the specificity of these enzymes for either sugar-phosphate or amino sugar-phosphate substrates.  相似文献   

6.
Reaction of 1,2-cyclohexanedione with chicken heart cytosolic aspartate transaminase results in loss of enzyme activity complying to first order kinetics up to 70% inactivation. The inactivation rate is markedly decreased in the presence of alpha-ketoglutarate, glutarate or alpha-methylaspartate. The number of arginine residues modified per subunit was approximately two (in enzyme preparations which retained 30% residual activity). The diketone-modified enzyme nearly completely loses affinity for alpha-methylaspartate and glutarate; in contrast, its ability to bind alpha-alanine and catalyze its transamination half-reaction with the bound coenzyme remains unimpaired. From these data it can be inferred that a functional arginine residue is the cationic binding site for the distal carboxyl group of the substrates. The transaminase apoenzyme was inactivated with cyclohexanedione at the same rate as reconstituted holoenzyme. Measurements of circular dichroism showed that the modified apoenzyme is capable to bind pyridoxal-P. No evidence was obtained for the presence of an arginine residue in the coenzyme binding site.  相似文献   

7.
Swan MK  Hansen T  Schönheit P  Davies C 《Biochemistry》2004,43(44):14088-14095
The crystal structure of a dual-specificity phosphoglucose/phosphomannose isomerase from the crenarchaeon Pyrobaculum aerophilum (PaPGI/PMI) has been determined in complex with glucose 6-phosphate at 1.16 A resolution and with fructose 6-phosphate at 1.5 A resolution. Subsequent modeling of mannose 6-phosphate (M6P) into the active site of the enzyme shows that the PMI activity of this enzyme may be due to the additional space imparted by a threonine. In PGIs from bacterial and eukaryotic sources, which cannot use M6P as a substrate, the equivalent residue is a glutamine. The increased space may permit rotation of the C2-C3 bond in M6P to facilitate abstraction of a proton from C2 by Glu203 and, after a further C2-C3 rotation of the resulting cis-enediolate, re-donation of a proton to C1 by the same residue. A proline residue (in place of a glycine in PGI) may also promote PMI activity by positioning the C1-O1 region of M6P. Thus, the PMI reaction in PaPGI/PMI probably uses a cis-enediol mechanism of catalysis, and this activity appears to arise from a subtle difference in the architecture of the enzyme, compared to bacterial and eukaryotic PGIs.  相似文献   

8.
The involvement of the lysine residue present at the active site of Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (Gra3PDH) was investigated by using the lysine specific reagents trinitrobenzenesulfonic acid (TNBS) and pyridoxal phosphate (PP). Both TNBS and PP inactivated EAC cell Gra3PDH with pseudo-first-order kinetics with the rate dependent on modifier concentration. Kinetic analysis, including a Tsou plot, indicated that both TNBS and PP apparently react with one lysine residue per enzyme molecule. Two of the substrates, d-glyceraldehyde-3-phosphate and NAD, and also NADH, the product and competitive inhibitor, almost completely protected the enzyme from inactivation by TNBS. A comparative study of Gra3PDH of EAC cell and rabbit muscle indicates that the nature of active site of the enzyme is significantly different in these two cells. A double inhibition study using 5,5'-dithiobis(2-nitrobenzoic acid) and TNBS and subsequent reactivation of only the rabbit muscle enzyme by dithiothreitol suggested that a cysteine residue of this enzyme possibly reacts with TNBS. These studies on the other hand, confirm that an essential lysine residue is involved in the catalytic activity of the EAC cell enzyme. This difference in the nature of the active site of EAC cell Gra3PDH that may be related to the high glycolysis of malignant cells has been discussed.  相似文献   

9.
Serine hydroxymethyltransferase: origin of substrate specificity.   总被引:5,自引:0,他引:5  
All forms of serine hydroxymethyltransferase, for which a primary structure is known, have five threonine residues near the active-site lysyl residue (K229) that forms the internal aldimine with pyridoxal phosphate. For Escherichia coli serine hydroxymethyltransferase each of these threonine residues has been changed to an alanine residue. The resulting five mutant enzymes were purified and characterized with respect to kinetic and spectral properties. The mutant enzymes T224A and T227A showed no significant changes in kinetic and spectral properties compared to the wild-type enzyme. The T225A and T230A enzymes exhibited differences in Km and kcat values but exhibited the same spectral properties as the wild-type enzyme. The four threonine residues at positions 224, 225, 227, and 230 do not play a critical role in the mechanism of the enzyme. The T226A enzyme had nearly normal affinity for substrates and coenzymes but had only 3% of the catalytic activity of the wild-type enzyme. The spectrum of the T226A enzyme in the presence of amino acid substrates showed a large absorption maximum at 343 nm with only a small absorption band at 425 nm, unlike the wild-type enzyme whose enzyme-substrate complexes absorb at 425 nm. Rapid reaction studies showed that when amino acid substrates and substrate analogues were added to the T226A enzyme, the internal aldimine absorbing at 422 nm was rapidly converted to a complex absorbing at 343 nm in a second-order process. This was followed by a very slow first-order formation of a complex absorbing at 425 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ammonium sulfate, a typical component of crystallization media of proteins, stabilizes an inactive conformation of pig muscle glyceraldehyde-3-phosphate dehydrogenase. In fact, in the presence of ammonium sulfate the reconstitution of the catalytically active holoenzyme from the apoenzyme and NAD is not instantaneous, as in the case of enzymes from Bacillus stearothermophilus and the Mediterranean lobster Palinurus vulgaris. With pig muscle enzyme, at pH 6.0, the time course of formation of the characteristic Racker band can be monitored by a rapid mixing stopped flow technique. Activation follows a single exponential curve with a rate constant independent of the concentration of both NAD and protein and, therefore, appears to be limited by a slow protein isomerization (k = 7 +/- 2 s-1). Accordingly, when the apoenzyme is simultaneously exposed to NAD and either glyceraldehyde 3-phosphate or 1,3-bisphosphoglycerate, the ensuing reactions (the redox and the acylation steps, respectively) are kinetically limited by the same protein isomerization. At pH 7.0 and 8.0, however, two among the four active sites react with NAD at an unmeasurably high rate, while the other two sites behave as they do at pH 6.0. When the pig muscle apoenzyme is preincubated and allowed to react with either glyceraldehyde 3-phosphate or 1,3-bisphosphoglycerate before the rapid mixing with NAD, both the redox reaction and the NAD-dependent activation of apo-acyl-enzyme toward arsenolysis become unmeasurably fast. Similarly, when the sulfate in the medium is replaced by ions such as phosphate and citrate, the reconstitution of the active holoenzyme is practically instantaneous. Thus, the slow protein isomerization observed in the presence of sulfate and abolished by competing substrates and anions is diagnostic of a structural state of the pig muscle apoenzyme, which is induced by sulfate ions bound within the enzyme active site.  相似文献   

11.
The inhibition of rat skeletal muscle glyceraldehyde-3-phosphate dehydrogenase by specific antibodies produced in rabbits has been studied. The results suggest that no influence on the enzyme active site is caused by the interaction with antibody, the inhibition being due entirely to the restricted accessibility for substrates of a part of dehydrogenase molecules included in the immune precipitate. Soluble complexes of the enzyme with monovalent Fab antibody fragments retain full catalytic activity. Modification of 8 -SH groups per mole of glyceraldehyde-3-phosphate dehydrogenase with p-chloromercuribenzoate results in no alterations in the quantitative precipitin curve, thus supporting the conclusion about the different localization of species-specific antigenic determinants of the enzyme and its active center. Interaction with monovalent Fab fragments of antibody stabilizes the structure of the dehydrogenase. Eight molar equivalents of Fab fragments almost completely protect the enzyme from cold inactivation in the presence of 0.15 M NaCl. Complex formation with Fab fragments does not prevent, however, the ADP-induced inactivation of the enzyme.  相似文献   

12.
Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.  相似文献   

13.
The interaction of pyridoxal 5-phosphate with beef liver serine hydroxymethyltransferase (5,10-methylenetetrahydrofolate:glycine hydroxymethyltransferase, EC 2.1.2.1) has been investigated using sedimentation velocity, kinetic and equilibrium techniques. No evidence for an aggregating system could be found in sedimentation velocity experiments in the presence or absence of pyridoxal 5-phosphate. Reassociation of pyridoxal 5-phosphate with apoenzyme and reacquisition of enzymic activity follow identical kinetics. An initial fast step is followed by a second order process with a rate constant of 66 M-1. s-1. A dissociation constant of 27.5 micrometer was obtained from equilibrium studies. No interaction of binding sites was exposed by altering pH or in the presence of glycine or folate. Maxima observed in pH profiles with both binding and reactivation are interpreted as the composite fo two overlapping processes, one of which is ionization of the pyridinium nitrogen of pyridoxal 5-phosphate and the other a functional group on the apoenzyme. Evidence is presented to indicate the necessity for the formation of an enzyme . pyridoxal 5-phosphate Schiff's base complex during catalytic turnover.  相似文献   

14.
Modification by pyridoxal-5-phosphate of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) purified from Saccharomyces cerevisiae produces an inactivation effect, partially reversible by dilution in the presence of substrates. Spectroscopic analysis of the enzyme pyridoxal-5-phosphate complex reduced with NaBH4 provides the values expected for the binding of the aldehydic group to Lys residue. One Lys residue appears to be responsible for the observed enzyme inactivation, and the presence of the phosphate group is required for the effect. Besides the change of activity, the binding of pyridoxal-5-phosphate to the enzyme causes an increase in susceptibility to degradation by the intracellular yeast proteinase A at pH 7.6.  相似文献   

15.
Summary Cytoplasmic aspartate aminotransferase from beef kindney loses 25% of its activity on nitration with tetranitromethane while the apoenzyme about 95%. In the holoenzyme 0.5 tyrosine residue and 1.0 tyrosine residue in the apoenzyme are nitrated per enzyme protomer. In addition 1 cysteine residue per protomer is oxidized in both. The presence of substrates,-ketoglutarate and glutamate, both at ten times their Km values, does not change these results. Mercaptoethanol does not affect the residual activity of either the nitrated holo or apoenzyme. Dithionite abolishes the activity of the nitrated holoenzyme by reducing the coenzyme moiety. It has no effect on the native holoenzyme or on either the native or nitroapoenzyme.This work is part of a program supported by a grant from the Consiglio Nazionale delle Ricerche.  相似文献   

16.
Aldose reductase (AR) catalyzes the NADPH-dependent reduction of glucose and other sugars to their respective sugar alcohols. The NADP+/NADPH exchange is the rate-limiting step for this enzyme and contributes in varying degrees to the catalytic rates of other aldo-keto reductase superfamily enzymes. The mutation of Arg268 to alanine in human recombinant AR removes one of the ligands of the C2-phosphate of NADP+ and markedly reduces the interaction of the apoenzyme with the nucleotide. The crystal structure of human R268A apo-aldose reductase determined to a resolution of 2.1 A is described. The R268A mutant enzyme has similar kinetic parameters to the wild-type enzyme for aldehyde substrates, yet has greatly reduced affinity for the nucleotide substrate which greatly facilitates its crystallization in the apoenzyme form. The apo-structure shows that a high temperature factor loop (between residues 214 and 226) is displaced by as much as 17 A in a rigid body fashion about Gly213 and Ser226 in the absence of the nucleotide cofactor as compared to the wild-type holoenzyme structure. Several factors act to stabilize the NADPH-holding loop in either the 'open' or 'closed' conformations: (1) the presence and interactions of the nucleotide cofactor, (2) the residues surrounding the Gly213 and Ser226 hinges which form unique hydrogen bonds in the 'open' or 'closed' structure, and (3) the Trp219 "latch" residue which interacts with an arginine residue, Arg293, in the 'open' conformation or with a cysteine residue, Cys298, in the 'closed' conformation. Several mutations in and around the high temperature factor loop are examined to elucidate the role of the loop in the mechanism by which aldose reductase binds and releases its nucleotide substrate.  相似文献   

17.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis ( Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.  相似文献   

18.
Initial velocity studies and product inhibition patterns for purine nucleoside phosphorylase from rabbit liver were examined in order to determine the predominant catalytic mechanism for the synthetic (forward) and phosphorolytic (reverse) reactions of the enzyme. Initial velocity studies in the absence of products gave intersecting or converging linear double reciprocal plots of the kinetic data for both the synthetic and phosphorolytic reactions of the enzyme. The observed kinetic pattern was consistent with a sequential mechanism, requiring that both substrates add to the enzyme before products may be released. The product inhibition patterns showed mutual competitive inhibition between guanine and guanosine as variable substrates and inhibitors. Ribose 1-phosphate and inorganic orthophosphate were also mutually competitive toward each other. Other combinations of substrates and products gave noncompetitive inhibition. Apparent inhibition constants calculated for guanine as competitive inhibitor and for ribose 1-phosphate as noncompetitive inhibitor of the enzyme, with guanosine as variable substrate, did not vary significantly with increasing concentrations of inorganic orthophosphate as fixed substrate. These results suggest that the mechanism was order and that substrates add to the enzyme in an obligatory order. Dead end inhibition studies carried out in the presence of the products guanine and ribose 1-phosphate, respectively, showed that the kinetically significant abortive ternary complexes of enzyme-guanine-inorganic orthophosphate (EQB) and enzyme-guanose-ribose 1-phosphate (EAP) are formed. The results of dead end inhibition studies are consistent with an obligatory order of substrate addition to the enzyme. The nucleoside or purine is probably the first substrate to form a binary complex with the enzyme, and with which inorganic orthophosphate or ribose 1-phosphate may interact as secondary substrates. The evidences presented in this investigation support an Ordered Theorell-Chance mechanism for the enzyme.  相似文献   

19.
1. Investigations with structural analogues of phenylalanine indicated an absolute requirement for the aromatic ring and both the alpha-carboxyl and alpha-amino groups of phenylalanine for inhibition of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthetase(phe) activity. Replacement of the alpha-H atom with a methyl group does not decrease the inhibition greatly. Varying degrees of inhibition were observed with o, m and p mono-substituted fluoro, chloro and hydroxy phenylalanines. D-Phenylalanine and several metabolites of the aromatic biosynthetic pathways do not inhibit enzymic activity. 2. Circular dichroism studies indicated that the native enzyme possesses approximately 26% alpha-helix. Both circular dichroic and ultraviolet difference spectra indicated that the addition of phenylalanine to the synthetase induces a conformational change involving a small alteration of the secondary structure and large alterations in th interactions of some of the aromatic residues of the enzyme. In particular, a tryptophan residue moves from an extremly hydrophobic environment to one less hydrophobic. 3. Kd for the binding of phenylalanine to the enzyme was determined spectrophotometrically to be 75 muM. 4. Chemical modification studies suggested that a sulphydryl group and possibly a lysine residue may be implicated in the catalytic activity of the enzyme.  相似文献   

20.
Recombinant human (His)6-transketolase (hTK) was obtained in preparative amounts by heterologous expression of the gene encoding human transketolase in Escherichia coli cells. The enzyme, isolated in the form of a holoenzyme, was homogeneous by SDS-PAGE; a method for obtaining the apoenzyme was also developed. The amount of active transketolase in the isolated protein preparation was correlated with the content of thiamine diphosphate (ThDP) determined in the same preparation. Induced optical activity, facilitating studies of ThDP binding by the apoenzyme and measurement of the transketolase reaction at each stage, was detected by circular dichroism spectroscopy. A single-substrate reaction was characterized, catalyzed by hTK in the presence of the donor substrate and in the absence of the acceptor substrate. The values of the Michaelis constant were determined for ThDP and a pair of physiological substrates of the enzyme (xylulose 5-phosphate and ribose 5-phosphate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号