首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genotypic heterogeneity of Streptococcus oralis isolated from the oral cavity was investigated using repetitive extragenic palindromic PCR. Unrelated subjects harbored unique genotypes, with numerous genotypes being isolated from an individual. S. oralis is the predominant aciduric bacterium isolated from noncarious tooth sites. Genotypic comparison of the aciduric populations isolated at pH 5.2 with those isolated from mitis-salivarius agar (MSA) (pH 7.0) indicated that the aciduric populations were genotypically distinct in the majority of subjects (chi(2) = 13.09; P = 0.0031). Neither the aciduric nor the MSA-isolated strains were stable, with no strains isolated at baseline being isolated 4 or 12 weeks later in the majority of subjects. The basis of this instability is unknown but is similar to that reported for Streptococcus mitis. Examination of S. oralis strains isolated from cohabiting couples demonstrated that in three of five couples, genotypically identical strains were isolated from both partners and this was confirmed by using Salmonella enteritidis repetitive element PCR and enterobacterial PCR typing. These data provide further evidence of the physiological and genotypic heterogeneity of non-mutans streptococci. The demonstration of distinct aciduric populations of S. oralis implies that the role of these and other non-mutans streptococci in the caries process requires reevaluation.  相似文献   

2.
The genotypic diversity of Actinomyces naeslundii genospecies 2 (424 isolates) and Streptococcus oralis (446 isolates) strains isolated from two sound approximal sites in all subjects who were either caries active (seven subjects) or caries free (seven subjects) was investigated by using the repetitive extragenic palindromic PCR. The plaque from the caries-active subjects harbored significantly greater proportions of mutans streptococci and lactobacilli and a smaller proportion of A. naeslundii organisms than the plaque sampled from the caries-free subjects. These data confirmed that the sites of the two groups of subjects were subjected to different environmental stresses, probably determined by the prevailing or fluctuating acidic pH values. We tested the hypothesis that the microfloras of the sites subjected to greater stresses (the plaque samples from the caries-active subjects) would exhibit reduced genotypic diversity since the sites would be less favorable. We found that the diversity of A. naeslundii strains did not change (χ2 = 0.68; P = 0.41) although the proportional representation of A. naeslundii was significantly reduced (P < 0.05). Conversely, the diversity of the S. oralis strains increased (χ2 = 11.71; P = 0.0006) and the proportional representation of S. oralis did not change. We propose that under these environmental conditions the diversity and number of niches within the oral biofilm that could be exploited by S. oralis increased, resulting in the increased genotypic diversity of this species. Apparently, A. naeslundii was not able to exploit the new niches since the prevailing conditions within the niches may have been deleterious and not supportive of its proliferation. These results suggest that environmental stress may modify a biofilm such that the diversity of the niches is increased and that these niches may be successfully exploited by some, but not necessarily all, members of the microbial community.  相似文献   

3.
Streptococcus oralis is the predominant aciduric nonmutans streptococcus isolated from the human dentition, but the role of this organism in the initiation and progression of dental caries has yet to be established. To identify proteins that are differentially expressed by S. oralis growing under conditions of low pH, soluble cellular proteins extracted from bacteria grown in batch culture at pH 5.2 or 7.0 were analyzed by two-dimensional (2-D) gel electrophoresis. Thirty-nine proteins had altered expression at low pH; these were excised, digested with trypsin using an in-gel protocol, and further analyzed by peptide mass fingerprinting using matrix-assisted laser desorption ionization mass spectrometry. The resulting fingerprints were compared with the genomic database for Streptococcus pneumoniae, an organism that is phylogenetically closely related to S. oralis, and putative functions for the majority of these proteins were determined on the basis of functional homology. Twenty-eight proteins were up-regulated following growth at pH 5.2; these included enzymes of the glycolytic pathway (glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase), the polypeptide chains comprising ATP synthase, and proteins that are considered to play a role in the general stress response of bacteria, including the 60-kDa chaperone, Hsp33, and superoxide dismutase, and three distinct ABC transporters. These data identify, for the first time, gene products that may be important in the survival and proliferation of nonmutans aciduric S. oralis under conditions of low pH that are likely to be encountered by this organism in vivo.  相似文献   

4.
The genotypic diversity of Actinomyces naeslundii genospecies 2 (424 isolates) and Streptococcus oralis (446 isolates) strains isolated from two sound approximal sites in all subjects who were either caries active (seven subjects) or caries free (seven subjects) was investigated by using the repetitive extragenic palindromic PCR. The plaque from the caries-active subjects harbored significantly greater proportions of mutans streptococci and lactobacilli and a smaller proportion of A. naeslundii organisms than the plaque sampled from the caries-free subjects. These data confirmed that the sites of the two groups of subjects were subjected to different environmental stresses, probably determined by the prevailing or fluctuating acidic pH values. We tested the hypothesis that the microfloras of the sites subjected to greater stresses (the plaque samples from the caries-active subjects) would exhibit reduced genotypic diversity since the sites would be less favorable. We found that the diversity of A. naeslundii strains did not change (chi2 = 0.68; P = 0.41) although the proportional representation of A. naeslundii was significantly reduced (P < 0.05). Conversely, the diversity of the S. oralis strains increased (chi2 = 11.71; P = 0.0006) and the proportional representation of S. oralis did not change. We propose that under these environmental conditions the diversity and number of niches within the oral biofilm that could be exploited by S. oralis increased, resulting in the increased genotypic diversity of this species. Apparently, A. naeslundii was not able to exploit the new niches since the prevailing conditions within the niches may have been deleterious and not supportive of its proliferation. These results suggest that environmental stress may modify a biofilm such that the diversity of the niches is increased and that these niches may be successfully exploited by some, but not necessarily all, members of the microbial community.  相似文献   

5.
Aim: To study genotypic diversity of isolates of Brochothrix thermosphacta recovered from meat, poultry and fish. Methods and Results: A total of 27 bacteria isolated from 19 samples of meat, poultry and fish were identified phenotypically and genotypically using PCR amplification of 16S‐23S rDNA intergenic transcribed spacer (ITS‐PCR), repetitive sequence‐based PCR (rep‐PCR) and 16S rDNA sequencing. Using ITS‐PCR, all bacteria showed the same DNA profile as the reference strains of Br. thermosphacta, allowing typing of the isolates at species level. Using 16S rDNA sequencing, all isolates were identified, at genus and species level, as Br. thermosphacta. Identification as Br. campestris was observed with a lower, but very close, level of similarity. Rep‐PCR was more discriminatory than ITS‐PCR and allowed differentiation of four subgroups among the isolates. Conclusion: Minor genotypic differences among Br. thermosphacta strains from meat, poultry and fish were observed. Significance and Impact of the Study: A rudimentary exploration of genotypic differences of Br. thermosphacta from meat, poultry and fish resulted in preliminary confirmation of the suitability of ITS‐PCR for typing Br. thermosphacta and confirmed the value of rep‐PCR fingerprinting to discriminate between Br. thermosphacta strains.  相似文献   

6.
7.
Streptococci and veillonellae occur in mixed-species colonies during formation of early dental plaque. One factor hypothesized to be important in assembly of these initial communities is coaggregation (cell-cell recognition by genetically distinct bacteria). Intrageneric coaggregation of streptococci occurs when a lectin-like adhesin on one streptococcal species recognizes a receptor polysaccharide (RPS) on the partner species. Veillonellae also coaggregate with streptococci. These genera interact metabolically; lactic acid produced by streptococci is a carbon source for veillonellae. To transpose these interactions from undisturbed dental plaque to an experimentally tractable in vitro biofilm model, a community consisting of RPS-bearing streptococci juxtaposed with veillonellae was targeted by quantum dot-based immunofluorescence and then micromanipulated off the enamel surface and cultured. Besides the expected antibody-reactive cell types, a non-antibody-reactive streptococcus invisible during micromanipulation was obtained. The streptococci were identified as Streptococcus oralis (RPS bearing) and Streptococcus gordonii (adhesin bearing). The veillonellae could not be cultivated; however, a veillonella 16S rRNA gene sequence was amplified from the original isolation mixture, and this sequence was identical to the sequence of the previously studied organism Veillonella sp. strain PK1910, an oral isolate in our culture collection. S. oralis coaggregated with S. gordonii by an RPS-dependent mechanism, and both streptococci coaggregated with PK1910, which was used as a surrogate during in vitro community reconstruction. The streptococci and strain PK1910 formed interdigitated three-species clusters when grown as a biofilm using saliva as the nutritional source. PK1910 grew only when streptococci were present. This study confirms that RPS-mediated intrageneric coaggregation occurs in the earliest stages of plaque formation by bringing bacteria together to create a functional community.  相似文献   

8.
Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions.  相似文献   

9.
Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts.  相似文献   

10.
Human beta-defensin-3 (hBD3) acts as a first line of defense against both Gram-positive and Gram-negative bacteria infection. Streptococci are the significant cause for oral biofilm associated diseases. We synthesized three fragments (hBD3-1, hBD3-2, hBD3-3) from the hBD3 and evaluated the antibacterial efficacy on oral streptococci. All of the three fragments from hBD3 had good estimated solubility and hBD3-3 had a higher net positive charge than others. Structure analysis showed that the three fragments shared stable β-sheet structure, but tyrosine were not found in hBD3-2 and hBD3-3 by using Raman and circular dichroism spectroscopy. The inhibition ability of the peptides was examined on the bioactivity of Streptococcus oralis (S.oralis), Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) by minimal inhibitory concentration, minimum bactericidal concentration and anti-biofilm formation test. Three fragments had antimicrobial activity on planktonic state of streptococci, and S. oralis had much more sensitive to the three peptides. Results of antibiofilm experiment showed that streptococci biofilm formation was more sensitive to hBD3-3. Confocal laser scanning microscopy and scanning electron microscopy showed the decrease of biomass and bacterial morphology destruction, which indicated that the antimicrobial mechanism of hBD3-3 might involve an electrostatic charge-based impact on membrane permeability. In conclusion, hBD3-3 possessed the potential capacity for depressing the growth of bacteria, especially first colonizers during the development of oral biofilm. Powerful, endogenous antimicrobial peptide provides the potential to interfere with biofilm by disorganizing early biofilm formation and thereby inhibiting biofilm-associated diseases.  相似文献   

11.
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.  相似文献   

12.
The effects of sealing infected carious dentine below dental restorations on the phenotypic and genotypic diversity of the surviving microbiota was investigated. It was hypothesized that the microbiota would be subject to nutrient limitation or nutrient simplification, as it would no longer have access to dietary components or salivary secretion for growth. The available nutrients would be limited primarily to serum proteins passing from the pulp through the patent dentinal tubules to the infected dentine. Ten lesions were treated, and infected dentine was sealed below dental restorations for approximately 5 months. Duplicate standardized samples of infected dentine were taken at baseline and after the removal of the restorations. The baseline microbiota were composed primarily of Lactobacillus spp., Streptococcus mutans, Streptococcus parasanguinis, Actinomyces israelii, and Actinomyces gerencseriae. None of these taxa were isolated among the microbiota of the dentine samples taken after 5 months, which consisted of only Actinomyces naeslundii, Streptococcus oralis, Streptococcus intermedius, and Streptococcus mitis. The microbiota of the final sample exhibited a significantly (P < 0.001) increased ability to produce glycosidic enzymes (sialidase, β-N-acetylglucosaminidase, and β-galactosidase), which liberate sugars from glycoproteins. The genotypic diversity of S. oralis and A. naeslundii was significantly (P = 0.002 and P = 0.001, respectively) reduced in the final samples. There was significantly (P < 0.001) greater genotypic diversity within these taxa between the pairs of dentine samples taken at baseline than was found in the 5-month samples, indicating that the dentine was more homogenous than it was at baseline. We propose that during the interval between placement of the restorations and their removal, the available nutrient, primarily serum proteins, or the relative simplicity and homogeneity of the nutrient supply significantly affected the surviving microbiota. The surviving microbiota was less complex, based on compositional, phenotypic, and genotypic analyses, than that isolated from carious lesions which were also exposed to salivary secretions and pH perturbations.  相似文献   

13.
《Genomics》2020,112(5):3783-3793
Streptococcus oralis is an early colonizer bacterium in dental plaques and is considered a potential pathogen of infective endocarditis (IE) disease. In this study, we built a complete genome map of Streptococcus oralis strain SOT, Streptococcus oralis strain SOD and Streptococcus infantis strain SO and performed comparative genomic analysis among these three strains. The results showed that there are five genomic islands (GIs) in strain SOT and one CRISPR in strain SOD. Each genome harbors various pathogenic genes related to diseases and drug resistance, while the antibiotic resistance genes in strains SOT and SOD were quite similar but different from those in strain SO. In addition, we identified 17 main virulence factors and capsule-related genes in three strains. These results suggest the pathogenic potential of Streptococcus strains, which lay a foundation for the prevention and treatment of a Streptococcus oralis infection.  相似文献   

14.
Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora.  相似文献   

15.
The purpose of this study was to investigate the intrafamilial distribution of mutans streptococci in Japanese families using chromosomal DNA fingerprinting with three endonucleases; EcoRI, HindIII and HaeIII. The analysis of 1,908 isolates cultured from the dental plaque of 76 subjects from 20 families (20 married couples and 36 of their children) resulted in the identification of 144 genotypes containing 114 strains of Streptococcus mutans (serotype c, 66.7%; e, 12.5%) and 30 strains of S. sobrinus (d, 13.2%; g, 7.6%). A mean of 1.89 genotypes (from one to four) was harbored in individual subjects, and a mean of 4.10 genotypes from two to seven was harbored in individual families. Among the 70 genotypes found in the children, 36 (51.4%) were in agreement with their mothers and 22 (31.4%) were in agreement with their fathers. The other genotypes (18.6%) did not correspond with the parents. Homologous strains between parents were found in only two couples. This result showed that fathers or others as well as mothers can be sources of transmission. Further, the serotype d, e and g strains showed significantly higher probabilities of transmission than serotype c.  相似文献   

16.
Deoxyribonucleic Acid Homology Among Lactic Streptococci   总被引:10,自引:8,他引:2       下载免费PDF全文
A comparison was made by deoxyribonucleic acid homology of 45 strains of lactic streptococci, using two strains of Streptococcus cremoris and three strains of Streptococcus lactis as reference strains. All S. cremoris strains were grouped together by deoxyribonucleic acid homology. S. lactis strains formed a second group, except that three strains of S. lactis showed a high degree of homology with S. cremoris strains. The three Streptococcus diacetylactis strains could not be differentiated from S. lactis strains. In spite of these differences between S. lactis and S. cremoris strains, the majority of S. cremoris, S. lactis, and S. diacetylactis strains studied had at least 50% of their base sequences in common. In contrast, Streptococcus thermophilus strains generally showed little relationship with the other strains of lactic streptococci. The relevance of these findings to the selection of starter strains for cheese making is discussed.  相似文献   

17.
Streptococcus gordonii DL1 (Challis) bears coaggregation-mediating surface adhesins which recognize galactoside-containing surface polysaccharides onStreptococcus oralis 34,Streptococcus oralis C104, andStreptococcus SM PK509. Fifty-nine spontaneously-occurring coaggregation-defective (Cog) mutants ofS. gordonii DL1 unable to coaggregate with partner streptococci were isolated. Six representative Cog mutants were characterized by their coaggregation properties with fourActinomyces naeslundii strains (T14V, PK947, PK606, PK984),Veillonella atypica PK1910, andPropionibacterium acnes PK93. The six representative Cog mutants showed altered coaggregation with their streptococcal partners,A. naeslundii PK947, andP. acnes PK93. Based on the coaggregation phenotypes of these mutants, a model for the lactose-inhibitable coaggregation betweenS. gordonii DL1 and its partner bacteria is proposed. The potential use of these mutants in studies of oral biofilms is discussed.  相似文献   

18.
Potential of Lactic Streptococci to Produce Bacteriocin   总被引:34,自引:15,他引:19       下载免费PDF全文
A survey was made on the bacteriocin-producing potential of lactic streptococci. Bacteriocin-like activities were isolated and partially purified from about 5% of the 280 strains investigated. The frequency of production varied from about 1% in Streptococcus lactis subsp. diacetylactis to 9 and 7.5% in S. lactis and Streptococcus cremoris, respectively. Eight strains of S. cremoris produced bacteriocins which, on the basis of heat stability at different pH values and inhibitory spectrum, could be divided into four types. From 54 S. lactis strains, 5 strains produced inhibitory substances, namely, three nisin-like antibiotics and two different bacteriocins. Only 1 of 93 S. lactis subsp. diacetylactis strains produced a bacteriocin which was very similar to bacteriocins of type I in S. cremoris. All of the bacteriocins that were partially purified by ammonium sulfate precipitation showed very limited inhibitory spectra. Most of the lactic streptococci and a few members of the genera Clostridium, Leuconostoc, and Pediococcus were inhibited. None of the bacteriocins acted on gram-negative bacteria. The bacteriocinogenic strains were also characterized on the basis of plasmid content. All strains possessed between one and nine plasmids ranging from 1 to 50 megadaltons.  相似文献   

19.
AIMS: This study assessed, for forensic purposes, the feasibility of genotypically matching oral streptococci recovered from recent human bite marks with those from the teeth of the biter. METHODS AND RESULTS: Streptococci were isolated from the incisors of eight volunteers. Arbitrarily primed PCR (AP-PCR) distinguished 106 streptococcal genotypes among the participants, each harbouring at least eight distinct strains. In a crime simulation, a sample from an experimental bite mark was analysed by an experimenter unaware of its origin. The bacteria were unambiguously matched to the biter by comparing the amplicon profiles with those from the eight participants. In contrast, bacteria from an additional bite mark (not generated by one of the original participants) could not be matched to any of the eight participants. Between 20 and 78% of catalogued bacterial genotypes were recovered 12 months later from each participant. Throughout the study period, none of the bacterial genotypes were shared between participants. CONCLUSIONS: Streptococci isolated from recent bite marks can be catalogued by AP-PCR and matched to the teeth responsible for the bite. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides 'proof of concept' that genotypic analysis of streptococci from bite marks may provide valuable forensic evidence in situations where the perpetrator's DNA cannot be recovered.  相似文献   

20.
The diversity among a set of bacterial strains that have the capacity to degrade total petroleum hydrocarbons (TPH) in soil contaminated with oily sludge (hazardous hydrocarbon waste from oil refineries) was determined. TPH is composed of alkane, aromatics, nitrogen-, sulfur-, and oxygen-containing compound, and asphaltene fractions of crude oil. The 150 bacterial isolates which could degrade TPH were isolated from soil samples obtained from diverse geoclimatic regions of India. All the isolates were biochemically characterized and identified with a Biolog microbial identification system and by 16S rDNA sequencing. Pseudomonas citronellolis predominated among the 150 isolates obtained from six different geographically diverse samplings. Of the isolates, 29 strains of P. citronellolis were selected for evaluating their genetic diversity. This was performed by molecular typing with repetitive sequence (Rep)-based PCR with primer sets ERIC (enterobacterial repetitive intergenic consensus), REP (repetitive extragenic palindromes), and BOXAIR and PCR-based ribotyping. Strain-specific and unique genotypic fingerprints were distinguished by these molecular typing strategies. The 29 strains of P. citronellolis were separated into 12 distinguishable genotypic groups by Rep-PCR and into seven genomic patterns by PCR-based ribotyping. The genetic diversity of the strains was related to the different geoclimatic isolation sites, type of oily sludge, and age of contamination of the sites. These results indicate that a combination of Rep-PCR fingerprinting and PCR-based ribotyping can be used as a high-resolution genomic fingerprinting method for elucidating intraspecies diversity among strains of P. citronellolis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号