首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.  相似文献   

2.
Bacterial infections may constitute an important risk factor of developing cancer disease. Molecular mechanisms by which bacteria contribute to cancer are extremely complex and still remain not fully understood. So far, it is generally accepted that Helicobacter pylori infections are associated with induction of gastric adenocarcinoma and MALT lymphoma. Two H. pylori toxins which modulate many cellular functions are VacA and CagA. So far, CagA is the only one known bacterial oncoprotein. However, many other bacteria produce toxins or effector proteins perturbing host cell homeostasis or/and evoking chronic inflammation. Both processes may be associated with tumour formation. Bacterial toxins which interfere, with various host signal transduction pathways, deregulate processes of cell division, proliferation and differentiation and modulate apoptosis. Some toxins cause even direct DNA damage. This review discuss the potential links between action of bacterial toxins and cancer.  相似文献   

3.
The mammalian cell cycle is involved in many processes--such as immune responses, maintenance of epithelial barrier functions, and cellular differentiation--that affect the growth and colonization of pathogenic bacteria. Therefore it is not surprising that many bacterial pathogens manipulate the host cell cycle with respect to these functions. Cyclomodulins are a growing family of bacterial toxins and effectors that interfere with the eukaryotic cell cycle. Here, we review some of these cyclomodulins such as cytolethal distending toxins, vacuolating cytotoxin, the polyketide-derived macrolide mycolactone, cycle-inhibiting factor, cytotoxic necrotizing factors, dermonecrotic toxin, Pasteurella multocida toxin and cytotoxin-associated antigen A. We describe and compare their effects on the mammalian cell cycle and their putative role in disease, commensalism and symbiosis. We also discuss a possible link between these cyclomodulins and cancer.  相似文献   

4.
Many Gram-negative pathogens translocate virulence proteins directly into host cells using a type III secretion system. This complex secretion machinery is composed of approximately 25 different proteins that assemble to span both bacterial membranes, and contact the host cell to form a direct channel between the bacterial and host cell cytoplasms. Assembly of the system and efficient secretion of virulence proteins through this apparatus require specific chaperones. Although the machinery is morphologically conserved among all bacteria, the secreted proteins vary widely and are responsible for the range of diseases caused by bacterial pathogens. Recent structures have given insights into important chaperone and effector proteins, as well as revealing the first atomic structures of portions of the secretion machinery itself.  相似文献   

5.
6.
Many plasmids affect the host cells. Their effects cannot be explained only by the expression of the well-known genes coding for antibioticresistance, bacteriocinogeny and hemolysis or the analogous genes (side-effects). The side effects are not characteristic of all plasmids operating under similar conditions. Forecasting of the side-effects inducikility by any definite plasmid is impossible now. Sometimes the same functions exert the contrary effects on the bacterial cell. The connection between the presence of plasmids, especially R-plasmids and the complex cellular property, virulence, is of great interest. Often, bacteria become less virulent obtaining the plasmids. Two possible reasons causing such an effect are discussed. The first one is a direct effect of plasmids on cellular physiology. The second reason is connected with population shifts caused by the fact that the cells with initial low virulence possess the recipient ability predominantly. The decreased virulence of bacteria harbouring R-plasmids, in authors opinion, is quite a natural phenomenon based on plasmid host cells adaptation to the existence in "the realm of antimicrobial agents".  相似文献   

7.
The synergies between viral and bacterial infections are well established. Most studies have been focused on the indirect mechanisms underlying this phenomenon, including immune modulation and alterations to the mucosal structures that promote pathogen outgrowth. A growing body of evidence implicates direct binding of virus to bacterial surfaces being an additional mechanism of synergy at the host–pathogen interface. These cross‐kingdom interactions enhance bacterial and viral adhesion and can alter tissue tropism. These bacterial–viral complexes play unique roles in pathogenesis and can alter virulence potential. The bacterial–viral complexes may also play important roles in pathogen transmission. Additionally, the complexes are recognized by the host immune system in a distinct manner, thus presenting novel routes for vaccine development. These synergies are active for multiple species in both the respiratory and gastrointestinal tract, indicating that direct interactions between bacteria and virus to modulate host interactions are used by a diverse array of species.  相似文献   

8.
Cellular responses induced after contact with Helicobacter pylori   总被引:9,自引:0,他引:9  
Contact-dependent activation of the cag organelle, a type IV secretion system of Helicobacter pylori, promotes translocation of CagA into the host cell. CagA is an immunodominant antigen of H. pylori, encoded by cag. It is thought to be associated with severe clinical outcomes, but has an unclear role in pathogenesis. Now we know that CagA is injected into the host and is tyrosine-phosphorylated by a membrane-associated eukaryotic tyrosine kinase. After activation, CagA induces morphological changes in the host, as well as actin reorganization, variations in the cell cycle and autocrine effects. Subversion of cell control may ultimately lead to cellular damage and to increased risks for gastric cancer development. cag instability contributes to long-term persistence within the host by attenuating bacterial virulence. We still do not know if additional factors are co-translocated with CagA and we do not know their specific mechanisms of action, but there is a strong experimental evidence that indicates that cag is the major player in the host-pathogen relationship.  相似文献   

9.
Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for 'attaching and effacing' (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co-immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp-2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.  相似文献   

10.
Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions.  相似文献   

11.
Many pathogenic Gram-positive bacteria produce cell wall-anchored proteins that bind to components of the extracellular matrix (ECM) of the host. These bacterial MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are thought to play a critical role in infection. One group of MSCRAMMs, produced by staphylococci and streptococci, targets fibronectin (Fn, a glycoprotein found in the ECM and body fluids of vertebrates) using repeats in the C-terminal region of the bacterial protein. These bacterial Fn-binding proteins (FnBPs) mediate adhesion to host tissue and bacterial uptake into non-phagocytic host cells. Recent studies on interactions between the host and bacterial proteins at the residue-specific level and on the mechanism of host cell invasion are providing a much clearer picture of these processes.  相似文献   

12.
Bacterial pathogens have developed a diversity of strategies to interact with host cells, manipulate their behaviors, and thus to survive and propagate. During the process of pathogenesis, phosphorylation of proteins on hydroxyl amino acids (serine, threonine, tyrosine) occurs at different stages, including cell-cell interaction and adherence, translocation of bacterial effectors into host cells, and changes in host cellular structure and function induced by infection. The phosphorylation reactions are catalyzed in a reversible fashion by specific protein kinases and phosphatases that belong to either the invading bacterial cells or the infected eukaryotic host cells. Among the various virulence factors involved in bacterial pathogenesis, special attention has been paid recently to the cell wall components, exopolysaccharides. A major breakthrough has been made by showing the existence of a biological link between the activity of certain protein-tyrosine kinases/phosphatases and the production and/or transport of surface polysaccharides. In addition, genetic studies have revealed a key role played by some serine/threonine kinases in pathogenesis. Considering the structural organization and membrane topology of these different kinases, it can be envisaged that they operate as one-component systems in signal transduction pathways, in the form of single proteins containing input and output domains on the same polypeptide chain. From a general standpoint, the demonstration of a direct relationship between protein phosphorylation on serine/threonine/tyrosine and bacterial virulence represents a novel concept of great importance in deciphering the molecular and cellular mechanisms that underlie pathogenesis.  相似文献   

13.
14.
Certain bacterial adhesins appear to promote a pathogen''s extracellular lifestyle rather than its entry into host cells. However, little is known about the stimuli elicited upon such pathogen host-cell interactions. Here, we report that type IV pili (Tfp)-producing Neisseria gonorrhoeae (P+GC) induces an immediate recruitment of caveolin-1 (Cav1) in the host cell, which subsequently prevents bacterial internalization by triggering cytoskeletal rearrangements via downstream phosphotyrosine signaling. A broad and unbiased analysis of potential interaction partners for tyrosine-phosphorylated Cav1 revealed a direct interaction with the Rho-family guanine nucleotide exchange factor Vav2. Both Vav2 and its substrate, the small GTPase RhoA, were found to play a direct role in the Cav1-mediated prevention of bacterial uptake. Our findings, which have been extended to enteropathogenic Escherichia coli, highlight how Tfp-producing bacteria avoid host cell uptake. Further, our data establish a mechanistic link between Cav1 phosphorylation and pathogen-induced cytoskeleton reorganization and advance our understanding of caveolin function.  相似文献   

15.
Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned "on." In a further set, it was "constitutively on" but experimentally "uninducible." Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to "sense" host cells.  相似文献   

16.
CagA is a multifunctional toxin of Helicobacter pylori that is secreted into host epithelial cells by a type IV secretion system. Following host cell translocation, CagA interferes with various host–cell signalling pathways. Most notably this toxin is involved in the disruption of apical–basolateral cell polarity and cell adhesion, as well as in the induction of cell proliferation, migration and cell morphological changes. These are processes that also play an important role in epithelial‐to‐mesenchymal transition and cancer cell invasion. In fact, CagA is considered as the only known bacterial oncoprotein. The cellular effects are triggered by a variety of CagA activities including the inhibition of serine–threonine kinase Par1b/MARK2 and the activation of tyrosine phosphatase SHP‐2. Additionally, CagA was described to affect the activity of Src family kinases and C‐terminal Src kinase (Csk) suggesting that interference with multiple cellular kinase‐ and phosphatase‐associated signalling pathways is a major function of CagA. Here, we describe the effect of CagA on protein kinase C‐related kinase 2 (PRK2), which acts downstream of Rho GTPases and is known to affect cytoskeletal rearrangements and cell polarity. CagA interacts with PRK2 and inhibits its kinase activity. Because PRK2 has been linked to cytoskeletal rearrangements and establishment of cell polarity, we suggest that CagA may hijack PRK2 to further manipulate cancer‐related signalling pathways.  相似文献   

17.
Enteropathogenic Escherichia coli (EPEC) triggers a dramatic rearrangement of the host epithelial cell actin cytoskeleton to form an attaching and effacing lesion, or pedestal. The pathogen remains attached extracellularly to the host cell through the pedestal for the duration of the infection. At the tip of the pedestal is a bacterial protein, Tir, which is secreted from the bacterium into the host cell plasma membrane, where it functions as the receptor for an EPEC outer membrane protein, intimin [1]. Delivery of Tir to the host cell results in its tyrosine phosphorylation, followed by Tir-intimin binding. Tir is believed to anchor EPEC firmly to the host cell, although its direct linkage to the cytoskeleton is unknown. Here, we show that Tir directly binds the cytoskeletal protein alpha-actinin. alpha-Actinin is recruited to the pedestal in a Tir-dependent manner and colocalizes with Tir in infected host cells. Binding is mediated through the amino terminus of Tir. Recruitment of alpha-actinin occurs independently of Tir tyrosine phosphorylation. Recruitment of actin, VASP, and N-WASP, however, is abolished in the absence of this tyrosine phosphorylation. These results suggest that Tir plays at least three roles in the host cell during infection: binding intimin on EPEC; mediating a stable anchor with alpha-actinin through its amino terminus in a phosphotyrosine-independent manner; and recruiting additional cytoskeletal proteins at the carboxyl terminus in a phosphotyrosine-dependent manner. These findings demonstrate the first known direct linkage between extracellular EPEC, through the transmembrane protein Tir, to the host cell actin cytoskeleton via alpha-actinin.  相似文献   

18.
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.  相似文献   

19.
Many physicochemical and biotic aspects of the soil environment determine the community composition of bacteria. In this study, we examined the effects of arbuscular mycorrhizal fungi, common symbionts of higher plants, on the composition of bacterial communities after long-term (7-8 years) enrichment culture in the presence of a plant host. We showed that the phylogeny of arbuscular mycorrhizal fungal isolates was a highly significant predictor of bacterial community composition, as assessed by cluster analysis, redundancy analysis and linear discriminant analysis of phospholipid fatty acid patterns. Numerous phospholipid fatty acids differed between the phylogenetic groupings; this pattern also held for fungal-origin phospholipid fatty acids and in a combined bacterial/fungal analysis, suggesting that categorizing phospholipid fatty acids into predominantly bacterial and fungal origin did not affect the overall outcome. The mechanisms underlying this observation could include substrate quality (and quantity) effects, interactions mediated by the host plant (e.g. rhizodeposition) and direct biotic interactions between arbuscular mycorrhizal fungi and bacterial populations. Our results suggest that aspects of arbuscular mycorrhizal fungal functions may be partially explained by the symbiosis-accompanying bacterial communities, a possibility that should be explicitly considered in studies examining the roles of arbuscular mycorrhizal fungal species diversity in soil and ecosystem processes.  相似文献   

20.
The cycle inhibiting factor (Cif) is a cyclomodulin produced by enteropathogenic and enterohemorrhagic Escherichia coli. Upon injection into the host cell by the bacterial type III secretion system, Cif inhibits the G2/M transition via sustained inhibition of the mitosis inducer CDK1 independently of the DNA damage response. In this study, we show that Cif induces not only G2, but also G1 cell cycle arrest depending on the stage of cells in the cell cycle during the infection. In various cell lines including differentiated and untransformed enterocytes, the cell cycle arrests are correlated with the accumulation of the cyclin-dependent kinase inhibitors p21(waf1/cip1) and p27(kip1). Cif-induced cyclin-dependent kinase inhibitor accumulation is independent of the p53 pathway but occurs through inhibition of their proteasome-mediated degradation. Our results provide a direct link between the mode of action of Cif and the host cell cycle control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号