首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium binding characteristics of the tritiated GABAA agonist, 5-aminomethyl-3-isothiazolol (thiomuscimol) are described. Using the filtration technique to separate bound- from free-ligand, [3H]thiomuscimol was shown to bind to the GABA(A) receptor site(s) in a saturable manner with a Kd value of 28+/-6.0 nM and a Bmax value of 50+/-4.0 fmol/mg original tissue. In parallel binding experiments, the Kd and Bmax values for [3H]muscimol were determined to be 5.4+/-2.8 nM and 82+/-11 fmol/mg original tissue, respectively. In binding assays using the centrifugation technique, Kd and Bmax values for [3H]thiomuscimol were found to be 116+/-22 nM and 154 13 fmol/mg original tissue, respectively, whereas a Kd value of 16+/-1.8 nM and a Bmax value of 155+/-8.0 fmol/mg original tissue were determined for [3H]muscimol. In comparative inhibition studies using the GABA(A) antagonist SR 95531 and a series of specific GABAA agonists, the binding sites for [3H]thiomuscimol and [3H]muscimol were shown to exhibit similar pharmacological profiles. Autoradiographic studies disclosed similar regional distribution of [3H]thiomuscimol and [3H]muscimol binding sites in rat brain. Highest densities of binding sites were detected in cortex, hippocampus, and cerebellum, whereas low densities were measured in the midbrain structures of rat cortex. In conclusion, the equilibrium GABA(A) receptor binding characteristics of [3H]thiomuscimol are very similar to those of [3H]muscimol.  相似文献   

2.
Several Good buffers (MOPS, ACES, BES, HEPES, ADA, and PIPES) competitively inhibited both high-affinity and low-affinity [3H]gamma-aminobutyric acid receptor binding to rat brain synaptic membranes. The most potent inhibitor was MOPS, which had Ki values of 180 nM and 79 nM for the high- and low-affinity binding sites, respectively. HEPES had Ki values of 2.25 mM and 115 microM. The buffers had no appreciable effect on sodium-dependent GABA binding or on gamma-aminobutyrate aminotransferase activity. Surprisingly, the buffers were extremely ineffectual as inhibitors of either high- or low-affinity [3H]muscimol binding. Indeed, they were of the order of 10(5) times less effective in this case than against [3H]GABA binding. These results clearly show (a) that the use of such buffers as MOPS or HEPES should be avoided in studying the interaction of GABA with its receptor, and (b) the binding sites of [3H]GABA and [3H]muscimol are not identical.  相似文献   

3.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Olfactory bulbs contain dendrodendritic synapses, which occur between granule cells and mitral cells, and gamma-aminobutyric acid (GABA) is thought to act as an inhibitory neurotransmitter at these synapses. Synaptosomes derived from the dendrodendritic synapses of the olfactory bulb were shown previously to contain considerable L-glutamate decarboxylase activity. The subcellular distribution and binding parameters of [3H]GABA and [3H]muscimol binding sites have now been determined in the rat olfactory bulb. Of all fractions examined, crude synaptic membranes (CSM) prepared from the dendrodendritic synaptosomes were shown to have the highest specific binding activity and accounted for nearly all of the total binding activity for both ligands. The specific binding activities for [3H]GABA and for [3H]muscimol were greatly increased after treating the CSM with 0.05% Triton X-100. Binding was shown to be Na+-independent, reversible, pharmacologically specific, and saturable. High- and low-affinity sites were detected for both ligands, and both classes of sites had appreciably lower KD values for muscimol (KD1 = 3.1 nM, KD2 = 25.1 nM) than for GABA (KD1 = 8.6 nM; KD2 = 63.7 nM). The amounts of the high-affinity binding sites for muscimol and GABA were similar (Bmax = 1.7 and 1.5 pmol/mg protein, respectively). The results of the present experiments indicate that the GABA and muscimol binding sites represent the GABA postsynaptic receptor, presumably on mitral cell dendrites, and provide further support for the hypothesis that GABA functions as a neurotransmitter at the dendrodendritic synapses in the olfactory bulb.  相似文献   

5.
Treatment of either crude or purified preparations of the gamma-aminobutyrate (GABA)/benzodiazepine receptor complex with arginine-specific reagents resulted in a time- and concentration-dependent loss of [3H]muscimol binding activity. Following exposure to either 2,3-butanedione or phenylglyoxal (less than or equal to 20 mM), [3H]muscimol binding was inhibited by up to 80%. [3H]Flunitrazepam binding was much less sensitive to the effects of the reagents. Scatchard analysis of the binding data indicated that treatment with butanedione resulted in a loss of [3H]muscimol binding sites with little effect on binding affinity. Considerable protection against inactivation was provided by arginine and by the endogenous receptor ligand, GABA. These results indicate that arginine residues play a critical role in maintaining the GABA receptor in a conformation capable of ligand binding, possibly by participating in the binding site through interaction with the carboxylate moiety of GABA.  相似文献   

6.
The presence of a [3H]muscimol binding site on the purified benzodiazepine receptor was demonstrated. The purified protein was apparently homogeneous as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (stained with silver), with a molecular weight of 60,000 +/- 3000. The benzodiazepine binding sites were characterized as being of the central type and the [3H]flunitrazepam binding was enhanced by GABA. This activation was antagonized by bicuculline. [3H]Muscimol specifically binds to the benzodiazepine receptor. The Scatchard plot indicates a Kd of 23 nM and the ratio [3H]flunitrazepam/[3H]muscimol is approximately unity.  相似文献   

7.
It was shown that nicotinamide and NAD inhibit the specific binding of [3H]flunitrazepam to benzdiazepine receptors without causing a direct influence of gamma-aminobutyric acid (GABA) receptors. The GABA-benzdiazepine complex was separated by solubilization with 0.5% lubrol PX. The solubilized preparations contain the binding sites for [3H]flunitrazepam alone (Kd = 5.9 nm). The Kd value for the membrane-bound benzdiazepine receptor is 2.9 nM. NAD inhibited the specific binding of [3H]flunitrazepam to the solubilized membrane preparation when used at concentrations by several orders of magnitude lower than that of nicotinamide. Using gel filtration on Sepharose 6B-CL, the molecular mass of the soluble benzdiazepine receptor protein was determined.  相似文献   

8.
The experiments reported in this paper address the question of heterogeneity of [3H]naloxone binding sites in rat brainstem synaptosomal preparations at 23°C in the presence of 100 mM sodium chloride. Kinetic analysis in the presence of 0.4, 4 and 10 nM [3H]naloxone gave pseudo-first order association rate of 0.9±0.04, 1.23±0.08 and 1.06±0.08 min–1, respectively. The dissociation of a 1 nM [3H]naloxone receptor complex was biphasic with dissociation rate constants of 1.8 and 0.4 min–1. On the other hand, dissociation of 10 nM [3H]naloxone was monophasic with ak d of 1.1 min–1. Two subpopulations of binding sites were also observed by steady state binding studies, with Kd values of 0.5 and 3.4 nM and a ratio of high to low affinity sites of 1:9. Heterogeneity of [3H]naloxone binding sites could be seen by displacement studies performed with opioid eptides and alkaloids. We suggest that our data best fits a model with two independent naloxone binding sites wherein either one or both undergo a multi-step interaction with ligand.  相似文献   

9.
Cells from the zona glomerulosa of rat adrenals were isolated and maintained for 3 days in primary culture. Specific vasopressin binding was determined by using [3H]vasopressin. [3H]Vasopressin binding was time-dependent (half-time of about 2 min for 6 nM free ligand) and reversible on addition of unlabelled vasopressin (80% dissociation within 30 min). Dose-dependent [3H]vasopressin binding at equilibrium indicated that vasopressin interacted with two populations of sites: high-affinity sites (dissociation constant, Kd = 1.8 nM; maximal binding capacity = 10 fmol/10(6) cells) and low-affinity sites. Vasopressin increased the cellular content of labelled inositol mono-, bis- and tris-phosphate in cells prelabelled with myo-[3H]inositol. The vasopressin concentration eliciting half-maximal inositol phosphate accumulation was very close to the Kd value for vasopressin binding to high-affinity sites. Competition experiments using agonists and antagonists with enhanced selectivity for previously characterized vasopressin receptors indicated that vasopressin receptors from rat glomerulosa cells are V1 receptors of the vascular or hepatic subtype. The detected specific vasopressin-binding sites might represent the specific receptors mediating the mitogenic and steroidogenic effects of vasopressin on glomerulosa cells from rat adrenals.  相似文献   

10.
As part of an ongoing study on the GABAA receptor complex in the developing chick optic tectum we describe some properties of the agonist site, as labeled by [3H]muscimol, including methodological, kinetic and pharmacological aspects. 16-day embryos and 10-day chicks have been selected as representative age points for the initial characterization of the receptor, prior to more detailed developmental studies. Our data indicate the existence, in both embryos and young birds, of a single class of statistically equivalent, high-affinity, saturable binding sites, with a dissociation constant (Kd) of 80–90 nM in freeze-thawed/washed membranes, and about 8 nM in membranes additionally extracted with low concentrations of Triton X-100. Maximal densities of binding sites are nearly identical in both membrane preparations, ranging from 2 to 3 pmol/mg for the two age points considered.

The pharmacological profiles suggest that avian receptors for [3H]muscimol are generally similar to the corresponding mammalian sites, behaving as typical bicuculline-sensitive, baclofen-insensitive type A GABA receptor sites. However, bicuculline and its derivatives are less efficient displacers of [3H]muscimol in detergent-extracted membrane preparations, being in all cases, as usually, much less effective displacers than GABA agonists.

The effect of Triton X-100 on the muscimol site in the GABAA receptor, increasing the affinity for the radioligand by a factor of 10, and diminishing the efficiency of antagonists, is considered here in terms of structural changes in the receptor, induced by the action of the detergent on the membrane microenvironment.  相似文献   


11.
Crude membrane fractions were prepared from rat retinae and used to study the specific binding of [3H]muscimol, a potent GABA agonist. Specific [3H]muscimol binding was enhanced 2–3 fold by pretreatment of the membranes with 0.025% Triton X-100. Two muscimol binding sites were demonstrated with KD values of 4.4 and 12.3 nM. GABA, muscimol, and 3-aminopropanesulfonic acid were the most potent inhibitors of specific [3H]muscimol binding with KI values of 15, 10, and 50 nM, respectively. These data are consistent with binding to the synaptic GABA receptor.  相似文献   

12.
Microchlorination of 1,4,9[3H]dibenzofuran gave several polychlorinated dibenzofuran (PCDF) products and 2,3,7,8-[3H]tetrachlorodibenzofuran (TCDF), 1,2,3,7,8-[3H]pentachlorodibenzofuran (PeCDF), and 1,2,3,6,7,8-/1,2,3,4,7,8-hexachlorodibenzofuran (HCDF) of high specific activity (57, 34, and 32.5 Ci/mmol, respectively) were purified by preparative high-pressure liquid chromatography. These compounds were investigated as radioligands for the rat liver cytosolic aryl hydrocarbon (Ah) receptor protein. Like 2,3,7,8-[3H]tetrachlorodibenzo-p-dioxin (TCDD), the radiolabeled PCDF congeners exhibited saturable binding with the receptor protein and sucrose density gradient analysis of the radiolabeled ligand-receptor complexes gave specific binding peaks with comparable sedimentation profiles. The rank order of radioligand binding affinities (Kd values) was 2,3,7,8-TCDD greater than 2,3,7,8-TCDF greater than 1,2,3,6,7,8-HCDF greater than 1,2,3,7,8-PeCDF and the maximum difference in Kd values for the four radioligands was less than 13-fold (0.44-5.9 nM). The interactions of the PCDF radioligands with the cytosolic receptor all exhibited saturable binding curves and linear Scatchard plots and the slopes of their Hill plots were in the range 1.0-1.1, thus indicating that cooperativity was not a factor in these binding interactions. The relative stabilities and dissociation kinetics of the radioligand-receptor complexes were highly dependent on the structure of the radioligand. The dissociation curves of the 2,3,7,8-[3H]TCDD and PCDF receptor complexes were biphasic and this suggests that there may be a temporal shift in ligand binding affinities. However, the rates of dissociation did not correlate with the rank order of ligand binding affinities. The stabilities of the radioligand-receptor complexes were also dependent on the structures of the radioligands; for example, the 2,3,7,8-[3H]TCDD-receptor complex degraded more rapidly than the PCDF-receptor complex and these relative stabilities were clearly not related to the Kd values or the relative in vivo or in vitro biologic potencies of these halogenated aryl hydrocarbons.  相似文献   

13.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

14.
Pretreatment of synaptosomal membranes with a diazo-coupling reagent and the presence of Cl- ions were used to differentiate high- and low-affinity populations of postsynaptic gamma-aminobutyric acid (GABAA) receptors. The super-low-affinity GABAA receptors were characterized by the enhancing effect of GABA on [3H]diazepam binding. The GABA antagonists 2-(3-carboxypropyl)-3-amino-4-methyl-6-phenylpyridazinium chloride (SR 95103) and 3-alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (R 5135) shifted and suppressed the dose-response curve of GABA on diazepam binding. SR 95103 displaced the lower affinity [3H]GABA binding with higher potency. Dissociation of the binding of the antagonist 2-(3-carboxypropyl)-3-amino-6-p-methoxyphenylpyridazinium bromide ([3H]SR 95531) was polyphasic. Displacing potencies of SR 95531 and GABA were examined on the major (85%) rapid and minor slower phases of dissociation separated kinetically. The slower phase corresponded to higher affinity binding of SR 95531 which was displaced by GABA with about 10 times less potency. Photoaffinity labeling with muscimol decreased the number of [3H]muscimol binding sites by 27%. It decreased the displacing potency of GABA by 72%, but not that of bicuculline methiodide. These findings can be explained by a preferential binding of antagonists to hydrophobic accessory sites around low-affinity GABAA receptors.  相似文献   

15.
The binding of [3H]cAMP to Dictyostelium discoideum cells was analyzed on a seconds time scale under both equilibrium and nonequilibrium conditions. The binding of [3H]cAMP increases rapidly to a maximum obtained at about 6 s, which is followed by a decrease to an equilibrium value reached at about 45 s. This decrease of [3H]cAMP binding is not the result of ligand degradation or isotope dilution by cAMP secretion but is due to a transition of high-affinity binding to low-affinity binding. Analysis of the dissociation rate of [3H]cAMP from the binding sites indicates that these high- and low-affinity binding sites are both fast dissociating with a half-life of about 1 s. In addition, these dissociation experiments reveal a third binding type which is slowly dissociating with a half-life of about 15 s. The number and affinity of these slowly dissociating sites does not change during the incubation with [3H]cAMP. The drugs caffeine and chlorpromazine do not change the total number of binding sites, but they change the ratio of the three binding types. In the presence of 10 mM caffeine almost all binding sites are in the low affinity conformation, while in the presence of 0.1 mM chlorpromazine the ratio is shifted to both the high-affinity type and slowly dissociating type. The results indicate that the cAMP-binding activity of D. discoideum cells is heterogeneous. In the absence of cAMP about 4% of the sites are slowly dissociating with Kd = 12.5 nM, about 40% are fast dissociating with high affinity (Kd = 60 nM), and about 60% are fast dissociating with low affinity (Kd = 450 nM). During the binding reaction the number of slowly dissociating sites does not change. The number of high-affinity sites decreases to a minimum of about 10% with a concomitant increase of low-affinity sites to about 90%. This transition of binding types shows first-order kinetics with a half-life of about 9 s. A half-maximal transition is induced by 12.5 nM cAMP.  相似文献   

16.
[3H]5-HT (0.16-8.32 nM) exhibited saturable and specific binding in membrane preparations of Hymenolepis diminuta. The saturation data produced a non-linear Scatchard plot which could be resolved into sites having apparent dissociation constants (Kd) of 0.17 and 8.30 nM for the high-affinity and low-affinity components, respectively. Drug displacement studies, using radioligand concentrations of 0.6 and 6 nM, revealed that the two [3H]5-HT binding components are pharmacologically distinct and do not conform to any known class of 5-HT recognition site. The physiological significance of these putative 5-HT receptors and their potential usefulness for the selection of new antiparasitic agents are discussed.  相似文献   

17.
Binding of the alpha-adrenergic agonist [3H]clonidine and the alpha-adrenergic antagonist [3H]WB-4101 exhibited multiple binding site characteristics in both rat frontal cortex and cerebellum. Kinetic analysis of the dissociation of both radioligands in rat frontal cortex suggests two high affinity sites for each ligand. Competition of various noradrenergic agonists and antagonists for [3H]WB-4101 binding yielded shallow competition curves, with Hill coefficients ranging from 0.45 to 0.7. This further suggests multiplicity in [3H]WB-4101 binding. In the rat cerebellum, competition of various noradrenergic drugs for [3H]clonidine binding yielded biphasic competition curves. Furthermore Scatchard analysis of [3H]clonidine binding in rat cerebellum showed two high affinity sites with KD = 0.5 nM and 1.9 nM, respectively. Competition of various noradrenergic drugs for [3H]WB-4101 binding in the rat cerebellum yielded biphasic competition curves. Lesioning of the dorsal bundle with 6-hydroxydopamine did not significantly affect the binding of either [3H]clonidine or [3H]WB-4101. These findings for both [3H]clonidine and [3H]WB-4101 binding in rat frontal cortex and cerebellum can be explained by the existence of postsynaptic binding sites for both 3H ligands.  相似文献   

18.
In frozen-thawed repeatedly washed rat cortical synaptic membranes, Ca2+ (1-5 mM) decreased the binding of [3H]muscimol whereas it increased the binding of [3H]gamma-aminobutyric acid (GABA). However, the binding of [3H]GABA was decreased by the same extent as the binding of [3H]muscimol when the membranes were incubated with baclofen (a selective ligand for the GABAB binding site) and Ca2+. Scatchard analysis of [3H]muscimol binding revealed that Ca2+ reduced the density of GABA binding sites without affecting the dissociation constant. Ca2+ was more potent than Ba2+, Mg2+ was ineffective, and the Ca2+ antagonist La3+ stimulated [3H]muscimol binding. The inhibition of [3H]muscimol binding by Ca2+ was not influenced by calmodulin (50 micrograms/ml), trifluoperazine (10(-5) M), verapamil (10(-6) M), quinacrine (10(-4) M), cordycepin (0.1 mM), leupeptin (20 microM), or soybean trypsin inhibitor (0.1 mg/ml). Moreover, the effect of Ca2+ was additive to that of GABA-modulin. These results indicate that Ca2+ decreases the number of GABAA binding sites while unveiling GABAB binding sites.  相似文献   

19.
[3H]Muscimol binding at 23°C and muscimol stimulated [3H]flunitrazepam binding at 37°C to membranes of rat cerebral cortex have been investigated. In washed membrane preparations, 2 apparent populations of [3H]muscimol binding sites can be observed. At 23°C [3H]muscimol binding is more sensitive to inhibition by NaCl and by other salts than at 0°C. The CNS depressants etazolate and pentobarbital reversibly enhance [3H]muscimol binding and they increase the affinity of muscimol as a stimulator of [3H]flunitrazepam binding. Conversely the CNS convulsants picrotoxin, picrotoxinin and isopropylbicyclophosphate (IPTBO) reversibly interfere with [3H]muscimol binding when NaCl is present and these drugs antagonize the effects of etazolate. In the presence of NaCl, picrotoxin, picrotoxinin and IPTBO also decrease the apparent affinity of muscimol or GABA as stimulator of [3H]flunitrazepam binding. Binding of [3H]muscimol to GABA recognition sites of rat cerebral cortex is enhanced by Ag+, Hg+ and Cu2+ in μM concentrations, Ag+ being most potent. The effects of 100 μM AgNO3 persist after repeated washing of the membranes. When membranes are pretreated with AgNO3 only one apparent population of [3H]muscimol binding sites with high affinity (Kd: 6–8 nM) is found. In AgNO3 pretreated membranes, the affinity of muscimol as stimulator of [3H]flunitrazepam binding is increased 18 times (EC50 14 nM) when compared to control membranes, (EC50 253 nM). In AgNO3 pretreated membranes, etazolate, pentobarbital and IPTBO fail to perturb either [3H]muscimol binding or baseline and muscimol stimulated [3H]flunitrazepam binding. The results demonstrate that the apparent sensitivity of GABA binding sites of the GABA-benzodiazepine-picrotoxin receptor complex can be increased by etazolate and pentobarbital and decreased by picrotoxin and IPTBO. These drugs have in common that they interfere with [3H]dihydropicrotoxinin binding.  相似文献   

20.
The kinetics of dissociation of [3H]methyl beta-carboline-3-carboxylate (beta-CCM) binding was studied in a synaptosomal membrane preparation of rat cerebral cortex. Dissociation was biphasic: a faster phase (10-30% contribution) was followed by a slower phase. Picrotoxin pretreatment at 22 degrees C enhanced the equilibrium binding of [3H]beta-CCM. The half-life of the slower phase of beta-CCM dissociation (t1/2II) was increased by 60 muM picrotoxin from 1.7 min to 3.3 min. The dissociation of [3H]beta-CCM was identical when initiated by an excess of either diazepam or beta-CCM. Quasi-equilibrium Scatchard analysis of [3H]beta-CCM binding was performed by a kinetic separation of the rapid and slow phases of dissociation. The slow and rapid phases represented beta-CCM binding sites of high and low affinity, respectively. The dissociation of [3H]beta-CCM (control t1/2II = 2.0 min) was decelerated by the gamma-aminobutyric acid (GABA) antagonist 3-alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (R 5135) (t1/2II = 2.5 min) and accelerated by GABA (t1/2II = 1.6 min). GABA inhibited both high- and low-affinity beta-CCM bindings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号