首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
周奕  朱耀峰  艾卫敏  张剑峰  卢璨  邓小华  雷德亮 《生物磁学》2012,(32):6253-6255,6245
目的:比较研究Aβ免疫阳性产物在老年APP/PSI双转基因(2xTg)与APP/PSI/Tau三转基因(3xTg)阿尔茨海默病模型小鼠海马的分布。方法:采用15月龄2xTg与同龄3xTg,分别进行Aβ单克隆抗体6E10免疫组化检测AB阳性神经元及斑块。结果:在海马区2xTg组Aβ沉积多发生于细胞外,形成大量Aβ阳性斑,而3xTg组则主要沉积于细胞内。结论:这种Aβ分布的差异可能与3xTg模型早期即有神经元丢失有关。  相似文献   

2.
目的:比较Aβ在两种阿尔茨海默病转基因小鼠模型脑新皮质区分布的差异。方法:采用18月龄雄性APP/PSl双转基因(2×Tg-AD)小鼠与同龄同性别APP/PSl/tau三转基因(3×Tg-AD)小鼠,取新皮质区脑组织行6E10单克隆抗体免疫组化染色等方法显示Aβ阳性神经元及斑块,观察其分布与形态等的差异,图像分析系统定量比较其量的变化。结果:在新皮质区2×Tg-AD组Aβ阳性产物主要位于细胞外即细胞外Aβ(e Aβ),形成大量的老年斑,细胞内阳性产物少;而3×Tg-AD组Aβ阳性产物主要位于神经元细胞内即细胞内Aβ(i Aβ),但老年斑少见。结论:2×Tg-AD组与3×Tg-AD组Aβ阳性产物在新皮质区分布的差异可能反映了两种AD小鼠模型神经病理等改变的不同。  相似文献   

3.
目的:比较Aβ在两种阿尔茨海默病转基因小鼠模型脑新皮质区分布的差异。方法:采用18月龄雄性APP/PSl双转基因(2×Tg-AD)小鼠与同龄同性别APP/PSl/tau三转基因(3×Tg-AD)小鼠,取新皮质区脑组织行6E10单克隆抗体免疫组化染色等方法显示Aβ阳性神经元及斑块,观察其分布与形态等的差异,图像分析系统定量比较其量的变化。结果:在新皮质区2×Tg-AD组Aβ阳性产物主要位于细胞外即细胞外Aβ(e Aβ),形成大量的老年斑,细胞内阳性产物少;而3×Tg-AD组Aβ阳性产物主要位于神经元细胞内即细胞内Aβ(i Aβ),但老年斑少见。结论:2×Tg-AD组与3×Tg-AD组Aβ阳性产物在新皮质区分布的差异可能反映了两种AD小鼠模型神经病理等改变的不同。  相似文献   

4.
ZnT3与Aβ在APP/PS1转基因小鼠老年斑内的定位及相关性   总被引:1,自引:0,他引:1  
目的研究锌转运体-3(zinc transporter 3,ZnT3)在APP/PS1转基因小鼠大脑皮层及海马内的表达,探讨ZnT3与β-淀粉样蛋白(β-amylold,Aβ)在老年斑内的定位分布及相关性。方法应用免疫荧光和共聚焦激光扫描显微镜观察ZnT3在APP/PS1转基因小鼠大脑内的表达及其与Aβ在老年斑内的位置关系。结果ZnT3主要分布于APP/PS1转基因小鼠大脑皮层和海马的老年斑中,海马苔藓纤维也可见ZnT3的阳性反应产物;ZnT3和Aβ双标的共聚焦激光扫描显微镜观察结果证实几乎所有Aβ老年斑中均有不同程度的ZnT3表达,且主要定位在老年斑周围的变性的神经元及其突起内,围绕老年斑的Aβ核心分布。结论ZnT3与Aβ共同表达于APP/PS1转基因小鼠老年斑内,提示ZnT3可能在老年斑内的锌离子的聚集过程中起着重要的调节作用,进而参与了APP/PS1转基因小鼠大脑内Aβ老年斑的形成。  相似文献   

5.
目的:研究H102对APP695转基因模型小鼠脑内淀粉样蛋白和淀粉样蛋白前体蛋白表达的影响方法:9月龄转基因小鼠随机分为模型组和药物注射组,正常对照组采用月龄和性别与之相匹配的C57BL/6J小鼠。药物注射组给予侧脑室注射H102,每只每次3μl,连续10d;模型组和正常对照组给予等体积NS。应用免疫组织化学结合刚果红组织学染色,普通光学显微镜观察海马和颞叶皮层蛋白表达的变化。免疫印迹法检测小鼠大脑皮层APP蛋白的表达。结果:Aβ和APP免疫组化染色结果显示对照组海马CA1区神经元胞浆着色呈阴性或弱阳性,模型组较对照组阳性细胞增多,表达增强,胞浆着色明显加深。药物注射组同模型组相比,胞浆着色变淡,表达减弱。刚果红染色观察转基因小鼠模型组和H102注射组大脑颞叶皮层和海马的淀粉样斑块,可见H102注射组淀粉样斑块数较模型组明显减少。正常对照组未见阳性淀粉样斑块。免疫印迹检测显示模型组APP蛋白表达明显增加,给药组与模型组相比具有统计学意义。结论:APP695转基因小鼠大脑CA1区Aβ蛋白和APP蛋白表达增加,H102能够明显抑制该转基因小鼠Aβ蛋白和APP蛋白表达。  相似文献   

6.
目的:建立Tau/APP/PS1三转基因小鼠模型,从分子生物学、行为学及病理学角度研究其生物学特征。方法:将自行建立的Tau转基因小鼠与Jackson实验室引种的APP/PS1双转基因小鼠杂交、传代;PCR鉴定小鼠基因型;RT-PCR检测外源基因的转录;Western blot测定外源基因的蛋白表达;Bielschowsky氏染色法和ABC免疫组化法观察大脑神经纤维缠结和老年斑等病理改变;Morris水迷宫观测学习记忆的改变。结果:Tau/APP/PS1三转基因小鼠的大脑可转录和表达Tau、APP和PS1三种外源基因,6~8月龄时大脑皮层和海马可见神经元纤维缠结和老年斑,其学习记忆获得能力在6月龄开始受损。结论:建立的Tau/APP/PS1三转基因小鼠具有Tau和Aβ两种病理改变和学习记忆障碍,为深入探究Tau与Aβ的关系、阐明AD的发病机制以及研发靶点治疗药物提供实验工具。  相似文献   

7.
为研究肉苁蓉苯乙醇苷对阿尔茨海默病模型小鼠海马β淀粉样蛋白表达的影响。实验选用6月龄APP/PS1双转基因AD模型小鼠60只,随机分为模型组、多奈哌齐组(0.65mg/kg)、肉苁蓉苯乙醇总苷剂量组(250,125,62.5mg/kg)、肉苁蓉毛蕊花糖苷组(125mg/kg),正常组为同窝非转基因小鼠10只,分别给予药物和蒸馏水灌胃3个月,于9月龄时通过Morris水迷宫法检测行为学改变,采用HE染色法观察小鼠脑部海马病变,采用免疫组化法和Western-blot法考察海马Aβ1-42和Aβ1-40蛋白表达。实验结果发现肉苁蓉苯乙醇苷明显改善小鼠学习与记忆能力和脑部海马神经元的损伤,减少Aβ1-42、Aβ1-40阳性细胞数,并下调蛋白表达。肉苁蓉苯乙醇苷通过下调小鼠海马脑区Aβ1-42、Aβ1-40蛋白表达,从而影响Aβ级联反应以保护神经元,发挥拮抗AD作用。本研究明确了苯乙醇苷是肉苁蓉发挥抗AD活性的主要药效物质基础,为后续将其开发为抗AD新药提供了理论支撑。  相似文献   

8.
目的研究阿尔茨海默病(Alzheimer disease,AD)模型小鼠APP/PS1转基因小鼠脑内锌转运体ZNT7的分布和表达,探讨ZNT7参与Aβ老年斑形成的机理。方法应用免疫组织化学染色观察ZNT7在脑内分布情况,应用Western Blot方法分析ZNT7在APP/PS1转基因小鼠大脑内的表达。结果ZNT7免疫阳性反应产物主要分布在APP/PS1转基因小鼠大脑皮层、纹状体和海马的老年斑内,强阳性的ZNT7免疫产物定位于老年斑的核心。Western Blot分析结果表明ZNT7在APP/PS1转基因小鼠大脑内的表达明显高于野生型小鼠。结论ZNT7在APP/PS1转基因小鼠大脑内的高表达以及在Aβ老年斑的定位,提示ZNT7可能参与了锌离子在老年斑内的聚集,进而参与了APP/PS1转基因小鼠大脑内老年斑的形成。  相似文献   

9.
摘要 目的:研究齐墩果酸(Oleanolic Acid,OA)对APP/PS-1双转基因阿尔茨海默病(Alzheimer''s disease,AD)小鼠模型神经保护作用及机制。方法:选取6月龄APP/PS-1雄性小鼠21只,随机分为模型组(0.5% CMC-Na)、阳性组(多奈哌齐组,0.7 mg?kg-1)、齐墩果酸组(10 mg?kg-1)每组7只,6月龄同背景SPF级C57BL/6小鼠7只为对照组。灌胃8周之后通过Morris水迷宫实验观察小鼠学习记忆能力的改变,HE染色观察神经元细胞形态,ELISA检测血清中Aβ1-42含量;免疫组化检测Aβ1-42、APP、Iba1蛋白表达情况;Western blot检测APP、Iba1蛋白表达水平。结果:(1)对照组,模型组,阳性组及齐墩果酸组进入有效区域次数分别为7.00±2.09,1.00±0.89,3.67±1.97,4.33±2.50,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(2)血清Aβ1-42含量按上述顺序依次为4.98±0.25,2.50±0.66,4.63±0.73,4.36±0.97,与模型组相比,对照组,阳性组,齐墩果酸组均有统计学意义(P<0.05);(3)免疫组化结果显示与模型组相比,对照组,阳性组,齐墩果酸组Aβ1-42、APP、Iba1蛋白阳性细胞数减少;(4)WB结果:对照组,模型组,阳性组,齐墩果酸组APP蛋白相对表达量分别为0.52±0.17,1.38±0.35,0.89±0.25,0.93±0.27;这四组的IBA1蛋白相对表达量分别为0.98±0.34,1.79±0.74,1.06±0.61,0.88±0.49,与模型组相比,野生对照组,阳性组,齐墩果酸组APP、IBA1蛋白相对含量有统计学意义(P<0.05)。结论:齐墩果酸组可以改善APP/PS-1模型小鼠记忆力及认知功能,降低海马神经元的损伤,并通过下调Aβ1-42、APP、Iba1蛋白的表达水平来发挥保护神经作用。  相似文献   

10.
鉴定及评价APP双突变阿尔茨海默病的转基因小鼠模型。方法将London/Swedish双突变APP基因插入到PDGF启动子下游,构建转基因表达载体,通过显微注射法建立APP695^V652I/K596N/M597L双突变转基因C57BL/6J小鼠。PCR鉴定APP695双突变转基因小鼠的基因表型,RT-PCR和Western blotting检测APP突变基因表达,免疫组化检测APP695双突变转基因小鼠大脑病理改变。水迷宫检测APP695^V652I/K596N/M597L转基因小鼠的行为学改变。结果建立了2个品系的人APP695^V652I/K596N/M597L转基因小鼠。抗Aβ1-17免疫组织化学显示APP695双突变转基因小鼠海马区阳性细胞数较APP695^V652I单突变转基因小鼠,及野生小鼠阳性细胞数明显增多,胞膜着色明显加深。双突变转基因小鼠在5月龄时可检测到老年斑。行为学检测显示APP695^V652I/K596N/M597L双突变转基因小鼠学习记忆能力比APP695^V652I单突变转基因小鼠有明显下降。结论APP695^V652I/K596N/M597L转基因小鼠较APP695^V652I转基因小鼠更早出现老年斑及学习认知能力障碍。成功建立了人APP695^V652I/K596N/M597L转基因小鼠阿尔茨海默病模型,为研究阿尔茨海默病发病机制和药物研发提供了有价值的动物模型。  相似文献   

11.
Alzheimer's disease (AD) involves several possible molecular mechanisms, including impaired brain insulin signaling and glucose metabolism. To investigate the role of metabolic insults in AD, we injected streptozotocin (STZ), a diabetogenic compound if used in the periphery, into the lateral ventricle of the 6-month-old 3xTg-AD mice and studied the cognitive function as well as AD-like brain abnormalities, such as tau phosphorylation and Aβ accumulation, 3–6 weeks later. We found that STZ exacerbated impairment of short-term and spatial reference memory in 3xTg-AD mice. We also observed an increase in tau hyperphosphorylation and neuroinflammation, a disturbance of brain insulin signaling, and a decrease in synaptic plasticity and amyloid β peptides in the brain after STZ treatment. The expression of 20 AD-related genes, including those involved in the processing of amyloid precursor protein, cytoskeleton, glucose metabolism, insulin signaling, synaptic function, protein kinases, and apoptosis, was altered, suggesting that STZ disturbs multiple metabolic and cell signaling pathways in the brain. These findings provide experimental evidence of the role of metabolic insult in AD.  相似文献   

12.
13.
Alzheimer''s disease (AD) is an age-associated progressive neurodegenerative disorder with dementia, the exact pathogenic mechanisms of which remain unknown. We previously reported that homocysteic acid (HA) may be one of the pathological biomarkers in the brain with AD and that the increased levels of HA may induce the accumulation of intraneuronal amyloid-beta (Aβ) peptides. In this study, we further investigated the pathological role of HA in a mouse model of AD. Four-month-old prepathological 3xTg-AD mice exhibited higher levels of HA in the hippocampus than did age-matched nontransgenic mice, suggesting that HA accumulation may precede both Aβ and tau pathologies. We then fed 3-month-old 3xTg-AD mice with vitamin B6-deficient food for 3 weeks to increase the HA levels in the brain. Concomitantly, mice received either saline or anti-HA antibody intraventricularly via a guide cannula every 3 days during the course of the B6-deficient diet. We found that mice that received anti-HA antibody significantly resisted cognitive impairment induced by vitamin B6 deficiency and that AD-related pathological changes in their brains was attenuated compared with the saline-injected control group. A similar neuroprotective effect was observed in 12-month-old 3xTg-AD mice that received anti-HA antibody injections while receiving the regular diet. We conclude that increased brain HA triggers memory impairment and that this condition deteriorates with amyloid and leads to subsequent neurodegeneration in mouse models of AD.  相似文献   

14.
Defects in neuronal activity of the entorhinal cortex (EC) are suspected to underlie the symptoms of Alzheimer's disease (AD). Whereas neuroprotective effects of docosahexaenoic acid (DHA) have been described, the effects of DHA on the physiology of EC neurons remain unexplored in animal models of AD. Here, we show that DHA consumption improved object recognition (↑12%), preventing deficits observed in old 3xTg-AD mice (↓12%). Moreover, 3xTg-AD mice displayed seizure-like akinetic episodes, not detected in NonTg littermates and partly prevented by DHA (↓50%). Patch-clamp recording revealed that 3xTg-AD EC neurons displayed (i) loss of cell capacitance (CC), suggesting reduced membrane surface area; (ii) increase of firing rate versus injected current (F-I) curve associated with modified action potentials, and (iii) overactivation of glutamatergic synapses, without changes in synaptophysin levels. DHA consumption increased CC (↑12%) and decreased F-I slopes (↓21%), thereby preventing the opposite alterations observed in 3xTg-AD mice. Our results indicate that cognitive performance and basic physiology of EC neurons depend on DHA intake in a mouse model of AD.  相似文献   

15.
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly and is a complex disorder that involves altered proteolysis, oxidative stress and disruption of ion homeostasis. Animal models have proven useful in studying the impact of mutant AD-related genes on other cellular signaling pathways, such as Ca2+ signaling. Along these lines, disturbances of intracellular Ca2+ ([Ca2+]i) homeostasis are an early event in the pathogenesis of AD. Here, we have employed microfluorimetric measurements of [Ca2+]i to investigate disturbances in Ca2+ homeostasis in primary cortical neurons from a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Application of caffeine to mutant presenilin-1 knock-in neurons (PS1KI) and 3xTg-AD neurons evoked a peak rise of [Ca2+]i that was significantly greater than those observed in non-transgenic neurons, although all groups had similar decay rates of their Ca2+ transient. This finding suggests that Ca2+ stores are greater in both PS1KI and 3xTg-AD neurons as calculated by the integral of the caffeine-induced Ca2+ transient signal. Western blot analysis failed to identify changes in the levels of several Ca2+ binding proteins (SERCA-2B, calbindin, calsenilin and calreticulin) implicated in the pathogenesis of AD. However, ryanodine receptor expression in both PS1KI and 3xTg-AD cortex was significantly increased. Our results suggest that the enhanced Ca2+ response to caffeine observed in both PS1KI and 3xTg-AD neurons may not be attributable to an alteration of endoplasmic reticulum store size, but to the increased steady-state levels of the ryanodine receptor.  相似文献   

16.
Advances in transgenic technology as well as in the genetics of Alzheimer disease (AD) have allowed the establishment of animal models that reproduce amyloid-beta plaques and neurofibrillary tangles, the main pathological hallmarks of AD. Among these models, 3xTg-AD mice harboring PS1 M146V, APP Swe and tau P301L human transgenes provided the model that most closely mimics human AD features. Although cortical cultures from 3xTg-AD mice have been shown to present disturbances in intracellular [Ca2+] homeostasis, the development of AD pathology in vitro has not been previously evaluated. In the current work, we determined the temporal profile for amyloid precursor protein, amyloid-β and tau expression in primary cortical cultures from 3xTg-AD mice. Immunocytochemistry and Western blot analysis showed an increased expression of these proteins as well as several phosphorylated tau isoforms with time in culture. Alterations in calcium homeostasis and cholinergic and glutamatergic responses were also observed early in vitro. Thus, 3x-TgAD cortical neurons in vitro provide an exceptional tool to investigate pharmacological approaches as well as the cellular basis for AD and related diseases.  相似文献   

17.

Background

The development of a safe and effective AD vaccine requires a delicate balance between providing an adequate anti-Aβ antibody response sufficient to provide therapeutic benefit, while eliminating an adverse T cell-mediated proinflammatory autoimmune response. To achieve this goal we have designed a prototype chemokine-based DNA epitope vaccine expressing a fusion protein that consists of 3 copies of the self-B cell epitope of Aβ42 (Aβ1–11) , a non-self T helper cell epitope (PADRE), and macrophage-derived chemokine (MDC/CCL22) as a molecular adjuvant to promote a strong anti-inflammatory Th2 phenotype.

Methods and Findings

We generated pMDC-3Aβ1–11-PADRE construct and immunized 3xTg-AD mouse model starting at age of 3–4 months old. We demonstrated that prophylactic immunizations with the DNA epitope vaccine generated a robust Th2 immune response that induced high titers of anti-Aβ antibody, which in turn inhibited accumulation of Aβ pathology in the brains of older mice. Importantly, vaccination reduced glial activation and prevented the development of behavioral deficits in aged animals without increasing the incidence of microhemorrhages.

Conclusions

Data from this transitional pre-clinical study suggest that our DNA epitope vaccine could be used as a safe and effective strategy for AD therapy. Future safety and immunology studies in large animals with the goal to achieve effective humoral immunity without adverse effects should help to translate this study to human clinical trials.  相似文献   

18.

Background

The pathogenic road map leading to Alzheimer''s disease (AD) is still not completely understood; however, a large body of studies in the last few years supports the idea that beside the classic hallmarks of the disease, namely the accumulation of amyloid-β (Aβ) and neurofibrillary tangles, other factors significantly contribute to the initiation and the progression of the disease. Among them, mitochondria failure, an unbalanced neuronal redox state, and the dyshomeostasis of endogenous metals like copper, iron, and zinc have all been reported to play an important role in exacerbating AD pathology. Given these factors, the endogenous peptide carnosine may be potentially beneficial in the treatment of AD because of its free-radical scavenger and metal chelating properties.

Methodology

In this study, we explored the effect of L-carnosine supplementation in the 3xTg-AD mouse, an animal model of AD that shows both Aβ- and tau-dependent pathology.

Principal Findings

We found that carnosine supplementation in 3xTg-AD mice promotes a strong reduction in the hippocampal intraneuronal accumulation of Aβ and completely rescues AD and aging-related mitochondrial dysfunctions. No effects were found on tau pathology and we only observed a trend toward the amelioration of cognitive deficits.

Conclusions and Significance

Our data indicate that carnosine can be part of a combined therapeutic approach for the treatment of AD.  相似文献   

19.
The single-chain variable fragment, scFv-h3D6, has been shown to prevent in vitro toxicity induced by the amyloid β (Aβ) peptide in neuroblastoma cell cultures by withdrawing Aβ oligomers from the amyloid pathway. Present study examined the in vivo effects of scFv-h3D6 in the triple-transgenic 3xTg-AD mouse model of Alzheimer disease. Prior to the treatment, five-month-old female animals, corresponding to early stages of the disease, showed the first behavioral and psychological symptoms of dementia -like behaviors. Cognitive deficits included long- and short-term learning and memory deficits and high swimming navigation speed. After a single intraperitoneal dose of scFv-h3D6, the swimming speed was reversed to normal levels and the learning and memory deficits were ameliorated. Brain tissues of these animals revealed a global decrease of Aβ oligomers in the cortex and olfactory bulb after treatment, but this was not seen in the hippocampus and cerebellum. In the untreated 3xTg-AD animals, we observed an increase of both apoJ and apoE concentrations in the cortex, as well as an increase of apoE in the hippocampus. Treatment significantly recovered the non-pathological levels of these apolipoproteins. Our results suggest that the benefit of scFv-h3D6 occurs at both behavioral and molecular levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号