首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin of the sporophyte in land plants represents a fundamental phase in the plant evolution. Today this subject is controversial and, in my opinion, scarcely considered in our textbooks and journals of botany, in spite of its importance. There are two conflicting theories concerning the origin of the alternating generations in land plants: the "antithetic" and the "homologous" theory. These have never been fully resolved. The antithetic theory maintains that the sporophyte and gametophyte generations are fundamentally dissimilar and that the sporophyte originated in an ancestor organism with haplontic cycle by the zygote dividing mitotically rather than meiotically, and with a developmental pattern not copying the developmental events of the gametophyte. The sporophyte generation was an innovation of critical significance for the land-plant evolution. By contrast, the homologous theory simply stated that a mass of cells forming mitotically from the zygote adopted the same developmental plan of the gametophyte, but giving origin to a diploid sporophyte. In this context, a very important question concerns the possible ancestor or ancestors of the land plants. Considerable evidences at morphological, cytological, ultrastructural, biochemical and, especially, molecular level, strongly suggest that the land plants or Embryophyta (both vascular and non-vascular) evolved from green algal ancestor(s), similar to those belonging to the genus Coleochaete, Chara and Nitella, living today. Their organism is haploid for most of their life cycle, and diploid only in the zygote phase (haplontic cycle). On the contrary, the land plants are characterized by a diplo-haplontic life cycle. Several questions are implied in these theories, and numerous problems remain to be solved, such as, for example, the morphological difference between gametophyte and sporophyte (heteromorphism, already present in the first land plants, the bryophytes), and the strong gap existing between these last with a sporophyte dependent on the gametophyte, and the pteridophytes having the gametophyte and sporophyte generations independent. On the ground of all of the evidences on the ancestors of the land plants, the antithetic theory is considered more plausible than the homologous theory. Unfortunately, no phylogenetic relationship exists between some green algae with diplontic life cycle and the land plants. Otherwise, perhaps, it should be possible to hypothesize another scenario in which to place the origin of the alternating generations of the land plants. In this case, could the gametophyte be formed by gametes produced from the sporophyte, through their mitoses or a delayed fertilization process?  相似文献   

2.
Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles,that is,alternation of multicellular gametophytic and sporophytic generations.The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent,dominant sporophyte and a reduced gametophyte.The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories.The Antithetic Theory proposes a green algal ancestor with a gametophyte-dominant haplobiontic life cycle.The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations.The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats.Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants.In recent years,exceptionally well-preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian,410 Ma),and the complete life cycle of several Rhynie chert plants has been reconstructed.All show an alternation of more or less isomorphic generations,which is currently accepted as the plesiomorphic condition among all early polysporangiophytes,including basal tracheophytes.Here we review the existing evidence for early embryophyte gametophytes.We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes.All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

3.
Abstract Embryophytes (land plants) are distinguished from their green algal ancestors by diplobiontic life cycles, that is, alternation of multicellular gametophytic and sporophytic generations. The bryophyte sporophyte is small and matrotrophic on the dominant gametophyte; extant vascular plants have an independent, dominant sporophyte and a reduced gametophyte. The elaboration of the diplobiontic life cycle in embryophytes has been thoroughly discussed within the context of the Antithetic and the Homologous Theories. The Antithetic Theory proposes a green algal ancestor with a gametophyte‐dominant haplobiontic life cycle. The Homologous Theory suggests a green algal ancestor with alternation of isomorphic generations. The shifts that led from haplobiontic to diplobiontic life cycles and from gametophytic to sporophytic dominance are most probably related with terrestrial habitats. Cladistic studies strongly support the Antithetic Theory in repeatedly identifying charophycean green algae as the closest relatives of land plants. In recent years, exceptionally well‐preserved axial gametophytes have been described from the Rhynie chert (Lower Devonian, 410 Ma), and the complete life cycle of several Rhynie chert plants has been reconstructed. All show an alternation of more or less isomorphic generations, which is currently accepted as the plesiomorphic condition among all early polysporangiophytes, including basal tracheophytes. Here we review the existing evidence for early embryophyte gametophytes. We also discuss some recently discovered plants preserved as compression fossils and interpreted as gametophytes. All the fossil evidence supports the Antithetic Theory and indicates that the gametophytic generation/sporophytic generation size and complexity ratios show a gradual decrease along the land plant phylogenetic tree.  相似文献   

4.
Characteristically, land plants exhibit a life cycle with an ‘alternation of generations’ and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte‐to‐sporophyte transition. Here, we discuss these findings in the context of classical botanical observations.  相似文献   

5.
Questions concerning the two competing theories of the development of alternating generations in land plants, the homologous theory and the antithetic theory, have never been fully resolved. In the majority of recent accounts there appears to have been increasing de facto support (if one considers the ontogenetic processes and phylogenetic consequences discussed) for the antithetic theory. However, this preference is usually not plainly stated (as such) in these discussions, and some support has also continued for the homologous theory. The crux of both theories (homologous and antithetic) centers upon how the sporophyte may have originated in the life cycle. One problem with the homologous theory is that it is not made explicit how the development of a dependent sporophyte could have occurred in the life cycle (when the precedent organisms are considered to have had free-living, putatively similar, gametophytes and sporophytes). The antithetic theory, by contrast, offers a definite ontogenetic mechanism or process (retention of the zygote on the gametophyte, delay of zygotic meiosis, with zygotic mitoses occurring first) by which a dependent sporophyte might have originated and persisted, in the context of a life cycle formerly lacking a sporophyte generation. Also, a review of a variety of evidence (morphological, cytological, biochemical, etc.) would appear to lend more support to the antithetic theory than to the homologous theory. In discussing types of algae now known to be most clearly related to land plants (i.e., charophytes, particularly advanced forms), the type of life cycle exhibited by these particular algae (haplontic, with zygotic meiosis; no sporophyte present) suggests that only an antithetic origin of the sporophyte in land plants is actually feasible.  相似文献   

6.

The morphology and ultrastructure of the spores of the enigmatic Lower Devonian plant Parka decipiens are briefly described and previous interpretations of the plant are discussed. It is suggested that the alete spores of Parka could have been haploid or diploid. The possibility that some early plant spores were diploid may be viewed as supporting the interpolation theory for the origin of alternation of generations in land plants. The spores of Parka may lie (in morphological and developmental terms) somewhere between the oospores produced by algae and the triradiate haploid spores of the bryophytes.  相似文献   

7.
Thin cell layers (TCLs) were cultured from inflorescences of diploid (2n=4x=48) and haploid (2n=2x=24)Nicotiana tabacum L. "Samsun" and the subsequent flowers formed in vitro were then compared to in vivo flowers. Plants derived from TCLs possessed flowers that were typical of their seed or androgenetically-derived counterparts, whereas de novo flowers from TCLs were abnormal when compared to their counterparts. The TCLs of haploid plants produced more flower buds than diploid TCLs, and did so in a shorter period of time. In vitro flowers and anthers at both ploidy levels were considerably smaller than the in vivo flowers; in vitro flowers also had variable numbers of anthers and pistils. The embryogenic capacity of anthers taken from in vivo diploid flowers was 5 times greater than that of in vitro diploid or haploid anthers. In vivo haploid anthers produced no embryoids, whereas in vitro haploid anthers did produce embryoids. Observations of mitotic cells in root tips of plants derived from anther cultures of in vitro haploid flowers revealed a mixoploid nature. Diploid meiosis was regular and haploid meiosis was irregular regardless of the origin (in vitro or in vivo) of the flowers.Supported by state Hatch funds.  相似文献   

8.
Two Brassica napus--Crambe abyssinica monosomic addition lines (2n=39, AACC plus a single chromosome from C. abyssinca) were obtained from the F2 progeny of the asymmetric somatic hybrid. The alien chromosome from C. abyssinca in the addition line was clearly distinguished by genomic in situ hybridization (GISH). Twenty-seven microspore-derived plants from the addition lines were obtained. Fourteen seedlings were determined to be diploid plants (2n=38) arising from spontaneous chromosome doubling, while 13 seedlings were confirmed as haploid plants. Doubled haploid plants produced after treatment with colchicine and two disomic chromosome addition lines (2n=40, AACC plus a single pair of homologous chromosomes from C. abyssinca) could again be identified by GISH analysis. The lines are potentially useful for molecular genetic analysis of novel C. abyssinica genes or alleles contributing to traits relevant for oilseed rape (B. napus) breeding.  相似文献   

9.
Small heat shock proteins (sHSPs) are chaperones that are crucial in the heat shock response but also have important nonstress roles within the cell. sHSPs are found in all three domains of life (Bacteria, Archaea, and Eukarya). These proteins are particularly diverse within land plants and the evolutionary origin of the land plant sHSP families is still an open question. Here we describe the identification of 17 small sHSPs from the complete genome sequences of five diverse algae: Chlamydomonas reinhardtii, Cyanidioschyzon merolae, Ostreococcus lucimarinus, Ostreococcus tauri, and Thalassiosira pseudonana. Our analysis indicates that the number and diversity of algal sHSPs are not correlated with adaptation to extreme conditions. While all of the algal sHSPs identified are members of this large and important superfamily, none of these sHSPs are members of the diverse land plant sHSP families. The evolutionary relationships among the algal sHSPs and homologues from bacteria and other eukaryotes are consistent with the hypothesis that the land plant chloroplast and mitochondrion sHSPs did not originate from the endosymbionts of the chloroplast and mitochondria. In addition the evolutionary history of the sHSPs is very different from that of the HSP70s. Finally, our analysis of the algal sHSPs sequences in light of the known sHSP crystal structures and functional data suggests that the sHSPs possess considerable structural and functional diversity. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

10.
Summary A chromosome doubling technique, involving colchicine treatment of an embryogenic, haploid callus line of maize (Zea mays L., derived through anther culture), was evaluated. Two colchicine levels (0.025% and 0.05%) and three treatment durations (24, 48, and 72 h) were used and compared to untreated controls. Chromosome counts and seed recovery from regenerated plants were determined. No doubled haploid plants were regenerated from calli without colchicine treatment. After treatment with colchicine for 24 h, the callus tissue regenerated about 50% doubled haploid plants. All of the plants regenerated from the calli treated with colchicine for 72 h were doubled haploids, except for a few tetraploid plants. No significant difference in chromosome doubling was observed between the two colchicine levels. Most of the doubled haploid plants produced viable pollen and a total of 107 of 136 doubled haploid plants produced from 1 to 256 seeds. Less extensive studies with two other genotypes gave similar results. These results demonstrate that colchicine treatment of haploid callus tissue can be a very effective and relatively easy method of obtaining a high frequency of doubled haploid plants through anther culture.  相似文献   

11.
The present investigation deals with the cultural observations on the morphology, reproduction, life cycle, cytology and taxonomy of a freshwater Cladophora, C. callicoma (L.) Kütz, from India. There is a regular isomorphic alternation of generations between quadriflagellate zoospore-producing diploid plants and biflagellate isogamete-producing haploid plants, coupled with heterothallism in the latter. Chromosome numbers of n = 12 and 2n = 24 were determined respectively for gametophytes and sporophytes. Twelve bivalents were counted in meiosis where chiasmata varied from one to three. In light of above observations, the affinity of C. callicoma with C. glomerata, to which the former has often been assigned, has been discussed. It is proposed that the C. glomerata complex, which consists of intraspecific polyploid races, might have two distinct lines of evolution with regard to life cycle; one with forms having higher ploidy levels and lacking an alternation of generations, and the other with forms having low ploidy levels and alternation of generations.  相似文献   

12.
Summary Crosses between male sterile L. corniculatus (2n=4x=24) and L. tenuis (2n=2x=12) plants were performed in order to verify the presence of 2n gametes in L. tenuis. All but one of the plants from these crosses had 2n=4x=24 and the L. corniculatus phenotype; this plant had 2n=2x=12 and the L. tenuis phenotype. The plants also showed good quantity of pollen at tripping, good pollen fertility and good percentage of seed setting in the backcross to L. corniculatus. On the whole, both cytological and morphological observations, showing that all but one of the plants from L. corniculatus x L. tenuis were normal tetraploids, suggest the existence of diploandrous gametes in L. tenuis. On the other hand, haploid parthenogenesis probably gave origin to the dihaploid plant 2n=2x=12.  相似文献   

13.
The parsimony and bootstrap branching pattern of major groups of land plants derived from relevant 5S rRNA sequence trees have been discussed in the light of paleobotanical and morphological evidences. Although 5S rRNA sequence information is not useful for dileneating angiosperm relationships, it does capture the earlier phase of land plant evolution. The consensus branching pattern indicates an ancient split of bryophytes and vascular plants from the charophycean algal stem. Among the bryophytes,Marchantia andLophocolea appear to be phylogenetically close and together withPlagiomnium form a monophyletic group.Lycopodium andPsilotum arose early in vascular land plant evolution, independent of fem-sphenopsid branch. Gymnosperms are polyphyletic; conifers, Gnetales and cycads emerge in that order with ginkgo joiningCycas. Among the conifers,Metasequoia,Juniperus andTaxus emerge as a branch independent ofPinus which joins Gnetales. The phylogeny derived from the available ss-RNA sequences shows that angiosperms are monophyletic with monocots and dicots diverging from a common stem. The nucleotide replacements during angiosperm descent from the gymnosperm ancestor which presumably arose around 370 my ago indicates that monocots and dicots diverged around 180 my ago, which is compatible with the reported divergence estimate of around 200 my ago deduced from chloroplast DNA sequences. Since deceased.  相似文献   

14.
Martínez  Enrique A. 《Hydrobiologia》1996,326(1):205-211
Micropopulation differences in phenol content between intertidal and subtidal individuals of the kelp Lessonia nigrescens were found. Subtidal plants showed: (1) significantly higher phenol content than intertidal individuals, in vegetative and reproductive tissues, (2) intra-plant differences, with higher content in apical frond tissues, (3) higher resistance to consumption by herbivorous fishes. The microscopic progeny of subtidal plants showed the same trend as adult plants: (1) haploid spores from subtidal plants had higher phenol content than spores from intertidal individuals, and (2) the microscopic sporophytes derived from subtidal spores and gametophytes were less consumed by herbivorous snails (Tegula tridentata) than those derived from intertidal plant propagules. No increase in phenol content was detected after mechanical injury to experimental fronds, or after transplantation to the subtidal environment.In addition to the absence of inducible responses, the different phenol content between intertidal and subtidal individuals, in adult diploid plants and also in the haploid progeny, suggests that both environments differ someway enough to fix the mentioned features on the plants of Lessonia nigrescens. It is likely that the differences in herbivory between the two distributional extremes contributed to the observed pattern.  相似文献   

15.
Variation in the number of nuclei and cellular ploidy were observed in eight strains ofHelicobasidium mompa. The basidiospores, single-spore isolates and field-isolated strains were all dikaryons. The cellular ploidy, which was assessed by analyzing the fluorescence emitted by DAPI-stained nuclei, was unstable: monokaryotic strains derived from the original dikaryotic strains by successive subcultures were mainly tetraploid, although the original dikaryon was in most cases diploid. On the other hand, a dikaryotic strain derived by treatment with benomyl was haploid. These results suggest that diploid dikaryon is a normal nuclear phase ofH. mompa in nature, and the alternation of ploidy may be due to a feature of the mating system of this fungus.  相似文献   

16.
Summary Anther culture of the Easter Lily (Lilium longiflorum; 2n=2x=24) was attempted in order to evaluate its potential in generating haploids for the production of hybrid cultivars. The effects of genotype, temperature (low temperature treatment of buds and high temperature treatment of cultures), sucrose concentration and growth regulators were tested. The most important factors for callus induction were the genotype and the presence of 2,4-dichlorophenoxyacetic acid. Pre-treatments at low or high temperature had no apparent effect, while high sucrose concentration was inhibitory. Callus was derived from 28 of the 108 genotypes tested and plants were regenerated. Phenotypic variations were observed among these regenerants. Somatic chromosome numbers were determined in 42 plants derived from 10 donor genotypes. Thirteen plants were diploid and 29 were mixoploid with chromosome numbers ranging from 11 to 26. Four of the mixoploid plants had a high proportion of cells with haploid chromosome numbers, particularly at early stages of development. Meiosis was examined in plants with flower buds. Most plants had 12 bivalents at Metaphase I, but also aneuploids were observed. Other irregularities included bridges and laggards at Anaphase I. The occurrence of high frequencies of haploid cells (up to 80%) in root tips suggests that some plants may be of gametic origin. Research was supported by the Easter Lily Research Foundation, the Ohio Floriculture Foundation, the Gloeckner Foundation and the Oregon Agricultural Experiment Station (technical paper no. 8398).  相似文献   

17.
Strong hybridization signals were obtained from total DNA of two conifers, lodgepole pine (Pinus contorta) and Norway spruce (Picea abies), in a Southern blot analysis using a probe derived from the chloroplast gidA gene of the green alga Chlamydomonas reinhardtii. The pine fragments detected by the probe were found to originate from the chloroplast genome and, as judged by the signal intensity, this was also true for the spruce fragments. Sequence analysis of the hybridizing pine chloroplast DNA region revealed an open reading frame potentially encoding a 459 amino acid polypeptide, highly homologous to that deduced from the algal gene and to ORF465 of liverwort chloroplast DNA. Upstream of the gidA sequence, we found a trnN(GUU) gene and an open reading frame of 291 codons which was 78% identical to the frxC gene of liverwort. Since ORF465 is located immediately downstream of trnN and frxC in liverwort, the genetic organization of this region is very similar in the two plants. In contrast, neither the gidA nor the frxC gene is present in the chloroplast DNA of tobacco or rice. It was recently reported that deletions in the gidA region of the chloroplast genome of Chlamydomonas reinhardtii abolish the light-independent pathway of chlorophyll synthesis which exists in many algae and lower plants. The presence of the gidA gene on the chloroplast genomes of conifers may therefore be of significance with respect to the ability of these plants to synthesize chlorophyll in the dark.  相似文献   

18.
The brown algal order Tilopteridales contains three monospecific genera with reduced life histories, Which are assumed to have been derived form ancestors with oogamous reproduction and alternation of generations. The Newfoundland population of Haplospora globosa Kjellman still shows an alternation of gametophytes and sporophytes, but the chromosome Numbers remain equal because of parthenogenesis and apomeiosis, However, DNA fluorometry showed that the DNA level is twice as high in the Sporophytes as in the gametophytes, The DNA variation at constant chromosome numbers is presumably due to endomitosis combined with a law degree of polyteny. A genotypic variant of Haplospora is represented by the population at Helgoland (F.R.G.) where only sporophytes exist, Spores develop into sporophytes instead of gametophytes, and the plants have reduced chromosome number but the same DNA level as the Newfoundland sporophytes  相似文献   

19.
This report describes a very high genome doubling efficiency of Brassica napus cv. Topas plants, derived from microspores induced to undergo embryogenesis with a colchicine treatment, without the use of a heat treatment. The plants showed normal growth and development, and 90% were fertile. In contrast, only 6% of the plants derived from heat-induced embryos were fertile diploids. All cytological analysis of the progeny of fertile plants showed 2n=38 chromosomes. These results show that colchicine can simultaneously induce microspore embryogenesis and double the ploidy level to produce doubled haploid plants.  相似文献   

20.
The maize autonomous transposable element Ac was introduced into haploid Nicotiana plumbaginifolia via Agrobacterium tumefaciens transformation of leaf disks. All the regenerated transformants (R0) were diploid and either homozygous or heterozygous for the hygromycin resistance gene used to select primary transformants. The Ac excision frequency was determined using the phenotypic assay of restoration of neomycin phosphotransferase activity and expression of kanamycin resistance among progeny seedlings. Some of the R0 plants segregated kanamycin-resistant seedlings in selfed progeny at a high frequency (34 to 100%) and contained one or more transposed Ac elements. In the primary transformants Ac transposition probably occurred during plant regeneration or early development. Other R0 transformants segregated kanamycin-resistant plants at a low frequency ( 4%). Two transformants of this latter class, containing a unique unexcised Ac element, were chosen for further study in the expectation that their kanamycin resistant progeny would result from independent germinal transposition events. Southern blot analysis of 32 kanamycin-resistant plants (R1 or R2), selected after respectively one or two selfings of these primary transformants, showed that 27 had a transposed Ac at a new location and 5 did not have any Ac element. Transposed Ac copy number varied from one to six and almost all transposition events were independent. Southern analysis of the R2 and R3 progeny of these kanamycin-resistant plants showed that Ac continued to transpose during four generations, and its activity increased with its copy number. The frequency of Ac transposition, from different loci, remained low ( 7%) from R0 to R3 generations when only one Ac copy was present. The strategy of choosing R0 plants that undergo a low frequency of germinal excision will provide a means to avoid screening non-independent transpositions and increase the efficiency of transposon tagging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号