首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Mersin Mélange (MM) as a part of the Mersin Ophiolitic Complex in southern Turkey is a sedimentary complex including blocks and tectonic slices within a Late Cretaceous matrix. Two blocks (Keven and Cingeypinari) within the MM originated from the northern branch of Neotethys (Izmir-Ankara-Erzincan Ocean) and have been studied in detail using foraminiferal assemblages to correlate them with coeval successions in the Taurides and to approach the Early Permian evolution of the northern branch of the Neotethys. The Keven block includes mainly slope deposits (poorly-sorted carbonate breccia and fossiliferous calcarenite) and dated as late Asselian-Sakmarian, whereas the Cingeypinari block consists of platform deposits (fossiliferous platform carbonate and quartz sandstone alternation) assigned to the Sakmarian-early Artinskian. These Early Permian Cingeypinari and Keven blocks from the Beysehir-Hoyran Nappes are biostratigraphically well correlated to the northerly originated Hadim nappe and its equivalents in the Tauride Belt. Considering recent studies on the Mersin Mélange, a possible mantle plume existed during the Late Carboniferous-Early Permian time interval along the northern Gondwanan margin. This event led to the opening of the northern Neotethys and deposition of the pelagic “Karincali” sequence with volcanic material in the basinal conditions. The data presented suggest that the Keven block relates to the slope and the Cingeypinari block to platform conditions deposited as a lateral equivalent of the Karincali sequences during the Early Permian.  相似文献   

2.
Summary Diverse and abundant trace fossils of the deep-waterNereites ichnofacies have been found in well-dated Early Permian deep-water turbidites (Lercara Formation) of western Sicily (Italy). Conodonts indicate a latest Artinskian to Cathedralian (late Early Permian) age. Microfossils (pelagic conodonts, albaillellid Radiolaria, paleopsychrospheric ostracods, foraminiferal associations dominated byBathysiphon), trace fossils (deep-bathyal to abyssalNereites ichnofacies) and sedimentologic data collectively indicate a deep-water environment for the Early Permian turbidites of the Lercara Formation. The dominance ofAgrichnium and of thePaleodictyon subichnogeneraSquamodictyon andMegadictyon suggests that this icnofauna is closely related in ichnotaxonomic composition to other late Paleozoic deep-water ichnofaunas. The occurrence ofAcanthorhaphe. Dendrotichnium andHelicoraphe, to date only reported from Cretaceous or Tertiary flysch deposits, suggests that the entire ichnofauna corresponds well to previously documented Silurian-Tertiary flysch ichnofaunas. Eight new ichnospecies and a new ichnosubgenus,Megadictyon, are described.  相似文献   

3.
The Carboniferous and Permian of the Baoshan block consist of three major depositional sequences: a Lower Carboniferous carbonate sequence, a Lower Permian siliciclastic sequence, and a Middle Permian carbonate sequence. These three sequences were interrupted by two major regressive events: first, the Namurian Uplift ranging in age from Serpukovian to Gzhelian, and second, the Post-Sakmarian Regression occurring probably at Artinskian time in the Baoshan block, although the precise time interval of the latter event is still unclear. The Baoshan block is characterized by warm-water, highly diverse and abundant faunas during the Early Carboniferous, by cold-water and low diversity faunas during the Early Permian, and by possibly warm-water but low diversity faunas during the Middle Permian. The Sweetognathus bucaramangus conodont fauna constrains the upper boundary of the diamictite-bearing siliciclastic deposits (Dingjiazhai Formation) to the Sakmarian to early Artinskian, as well as the eruption of the rifting basalts (Woniusi Formation) to, at least, the post-early Artinskian. Paleozoogeographically, affiliation of the faunas in the Baoshan block changed from Eurasian in the Early Carboniferous, to Peri-Gondwanan in the Early Permian, and to Marginal Cathaysian/Cimmerian in the Middle Permian. Cimmerian blocks have more or less comparable geohistory to one another in the Carboniferous and Permian. During the Middle Permian, the eastern Cimmerian blocks such as Sibumasu (s.s), Baoshan, and Tengchong are not far from the palaeoequator, but apparently more distant than the western Cimmerian blocks based on the presence or absence of some index taxa such as the fusulinaceans Eopolydiexodina and Neoschwagerina, and the corals Thomasiphyllum and Wentzellophyllum persicum.  相似文献   

4.
滇西保山地区石炭纪、二叠纪古动物地理演化   总被引:14,自引:0,他引:14  
探讨滇西保山地块晚古生代Ting类、有孔虫、珊瑚、牙形刺、腕足类等动物群的古生物地理属性,根据牙形刺和Ting类化石,确定长期争论的丁家寨组的时代为Artinskian期,小型单体珊瑚Cyathaxonia动物群可出现在从早石炭世到二叠纪的多种沉积环境中,不一定指示冷水冈瓦纳型。根据沉积特征及对环境特别敏感的珊瑚和Ting类动物群的分布特点,结合全球构造事件,恢复保山地块的古地理演化模式。早石炭世  相似文献   

5.
During the International Peri-Tethys Program, the realization of the maps required efficient correlation tools. During the Late Paleozoic and particularly during the Wordian (Middle Permian), the Russian Platform was under continental and/or marginal paleoenvironmental conditions. This paper draws up the synthesis of the ostracode species recognized in the Middle-Late Permian in this area, from the Barents Sea up to the Precaspian Depression, and shows their importance as a stratigraphic tool for the correlations of continental series.  相似文献   

6.
7.
A detailed facies study of Early Permian strata within NE Svalbard reveals a fundamental change of the depositional setting, from a restricted-marine, warm-water carbonate platform to an open-marine, temperate-water, mixed siliciclastic-carbonate ramp. The uppermost strata of the Gipshuken Formation (Templet and Sørfonna members; Sakmarian–early Artinskian?) consist of microbialites (algal mats), mudstones, bioclastic/peloidal limestones, carbonate breccias and Microcodium facies reflecting peritidal platform areas and supratidal sabkhas. A mixed heterozoan/reduced photozoan assemblage indicates temperate-water conditions within neighboring deeper, open-marine mid-platform areas, while warm-water conditions still prevailed within inner platform zones. In contrast, the lowermost strata of the overlying Kapp Starostin Formation (Vøringen Member; late Artinskian?–Kungurian) show a fully heterozoan biotic assemblage reflecting temperate water conditions within open-marine, storm-dominated, nearshore to transitional offshore areas of a mixed carbonate-siliciclastic ramp. The Vøringen Member comprises three facies associations, which form a shallowing-upward sequence subsequent to an initial transgression. The sediments reflect bryozoan bioherms in most distal areas, followed by stacked tempestites of sandy brachiopodal shell banks and Skolithos piperocks, grading into broad sand flats in most proximal areas of the inner ramp. The above environmental change is regarded as a regional event taken place across the entire shelf along the northern margin of Pangea and is attributed to paleoclimatic, paleoceanographic, as well as paleogeographic changes, possibly related to the overall northwards drift of the supercontinent. An abrupt increase in terrigenous input coinciding with this change is ascribed to the uplift of a new local source area, probably to the north or east of the investigation area.  相似文献   

8.
H. Wopfner  X.C. Jin   《Palaeoworld》2009,18(2-3):169-192
The maximum concentration of continental crust at the Pangea stage is characterized by a specific depositional sequence generally referred to as the Pangea Megasequence. Extending in time from the Late Carboniferous to the middle of the Triassic, the succession exhibits similar trends across the whole of Gondwana. Invariably, the sequence was initiated by Late Carboniferous to Early Permian glacial and periglacial deposits. Deglaciation occurred in Early Sakmarian time, evidenced by a typical, commonly transgressive facies. The succeeding formations comprise, in ascending order, coal measures, redbeds, some more coal measures and again redbeds with an intercalation of fluviatile sands in the Early Triassic.After deglaciation the basic depositional theme was modified, depending on postglacial adjustments of climate and on the type of regional tectonic regimes. Extension of the tropical climatic belt after deglaciation was one factor that governed the resulting sediment facies. Coal deposition that prevailed in central Gondwana in the Early Permian gave way to dominance of redbeds in the Middle and Late Permian and, in more distal positions, evaporitic deposits were laid down, following deglaciation. Within marine realms, coralline limestones were formed.Within Gondwana the depositional period of the Pangea Megasequence was governed by three distinctive tectonic regimes: collision dominated the Panthalassa margin, transpressional sag controlled the interior basins, and extension and rifting was experienced along the entire Tethyan margin. In the Early Permian, large and complex graben structures commenced to develop between Africa and India (Malagasy Trough) and between India and Australia (West Australian Trough), giving access to Tethyan waters during deglaciation, commencing in the late Early Sakmarian.Rifting along the Tethyan margin commenced in the Early Permian and was associated with active volcanism between Cashmere and Yunnan and in north-western Australia. Spreading of Neo-Tethys and the formation of oceanic crust, leading to the separation of the Cimmerian Blocks from Gondwana, commenced in the late Early Permian and continued into the Triassic. Thus two facies realms developed, an intracratonic rift facies comprising the Cashmere, Lhasa and Baoshan blocks and a facies controlled by detachment, comprising more distal blocks, such as Tengchong, Malay and Sumatra. The present distribution of individual blocks was governed by fold movements of the Himalayan Orogeny, complicated by transpression along the eastern Himalayan Syntaxis.  相似文献   

9.
Worldwide Late Cambrian—Silurian lithofacies patterns indicate that the platforms of that time were sites of accumulation of two essentially different rocks suites: the platform carbonate rocks and the platform terrigenous rocks. Most of the platform rocks accumulated as sediments in shallow marine environments similar to those of the present but far more widely spread.Present-day marine benthic faunas are distributed in depth zones which are primarily controlled by temperature. Faunas tend to occur in substrate-related discrete clusters (communities) within each life zone; similar substrates in different depth zones commonly have different faunal associations. Individual phyletic stocks may encounter environmental optimum or near-optimum conditions in certain areas, that commonly are revealed by an abundance of species and individuals within species in each stock. Environmental optimum conditions depend upon availability of food that may be utilized, modes of feeding of the animals present, water motion, and substrate, among other factors. Organisms in past seas were distributed in patterns similar to those of the present.Carbonate platforms were particularly widespread during the latest Cambrian—Early Ordovician. Intertidal environments spread widely across those platforms during that time and characteristic faunal associations developed in them. Saukiid and related tribolites dominated latest Cambrian carbonate platform intertidal faunas. The Early Ordovician carbonate platform intertidal was dominated by archeogastropod-nautiloid cephalopod faunas. These animals were joined by tabulate corals and certain brachiopods during the latter part of the Ordovician and Silurian as prominent faunal elements in the carbonate platform intertidal—shallow subtidal. Cruziana and related trace fossils, bivalves, and certain tribolites (notably homalonotids and dalmanitids) dominated most terrigenous platform intertidal—shallow subtidal faunas of the Ordovician and Silurian.Articulate brachiopods (primarily orthoids, strophomenoids, and rhynchonelloids) appear to have been relatively prominent during the Early Ordovician in shallow subtidal environments on both carbonate and terrigenous platforms and to have spread down the bathymetric gradient into increasingly deeper subtidal areas of both platforms during the latter part of the Ordovician. Tribolites dominated faunas in relatively moderate to deep subtidal environments on both platforms during the early part of the Ordovician. They were gradually replaced by brachiopods in first the shallower, and later the deeper subtidal as dominant members of the faunas. Brachiopods (primarily pentameroids and spiriferoids) dominated nearly all Silurian warm-water subtidal environments from the shallow subtidal to the edges of the platforms.Platform uplifts in the Middle Ordovician and glacio-eustatic sea-level fluctuations in the Late Ordovician caused environmental changes across the platforms that were accompanied by marked replacements among marine benthic faunas in all environments. The distribution of Ordovician carbonate platforms and glacial deposits suggests that an Ordovician polar region may have been close to present-day equatorial Africa and that Ordovician warm temperate-tropical regions lay close to the present-day North Pole.  相似文献   

10.
Michaela Bernecker 《Facies》2005,51(1-4):442-453
The paleolatitudinal distribution patterns during Ladinian and Carnian time are characterized by an increasing expansion of reefs from the northern to the southern hemisphere. The optimum of reef diversity and frequency in the Norian is associated with the development of extended attached or isolated carbonate platforms. Norian-Rhaetian sponge and coral reefs of the Northern Calcareous Alps developed (1) as reef belt composed of patch reefs in platform-edge positions facing the open-marine northwestern Tethys basins and (2) as patch reefs in intraplatform basins as well as in ramp positions.Carnian and Norian-Rhaetian sponge and coral reefs of the Arabian Peninsula are formed (1) as reef complexes at the margins of carbonate platforms on the tops of volcanic seamounts in the southern Tethyan ocean, as small biostromes on these isolated platforms, and (2) as transgressive reef complexes on the attached platform of the Gondwana margin. The Norian Gosaukamm reefal breccia of the NW Tethys is a counterpart of Jabal Wasa reefal limestone of the Gondwana margin with similarities in geological setting and biotic composition. Rhaetian coral biostromes of low diversity known from the Austrian Koessen basin resemble to the time equivalent Ala biostromes of the isolated Kawr platform in the southern Neo-Tethys by forming a discontinuous layer in shallow intraplatform basin setting.  相似文献   

11.
Shallow-marine limestones associated to a Palaeotethyan seamount in the Teke Dere unit of the Tavas Nappe (Lycian Nappes, SW Turkey) are essentially latest Moscovian-Kasimovian in age. The wide range of microfauna and -flora of the series show biogeographic affinities comparable to those from the northern Palaeotethyan borders (especially to assemblages from the Carnic Alps, Urals, Donbass and Darvaz). These biogeographic affinities seem to persist until the end of the Early Permian (Artinskian). The Middle Permian fauna is represented by the typical warm, tropical assemblages known at the same time in the Palaeotethys (NW Caucasus, Darvaz, south China, Primorie and Japan), and in the Neotethys (Transcaucasia, central Iran, southern Afghanistan and Sibumasu). The new Kasimovian algae and incertae sedis Novantiellopsis elliottii n. gen. n. sp., Uvanellopsis fluegelii n. gen. n. sp., Tubiphytes rauzerae n. sp. and Asselodiscus davydovi n. sp. are described.  相似文献   

12.
Analysis of a large database of the stratigraphic distribution of fusulinacean Foraminifera reveals an Early Permian event of significant decline of species diversity in South China. Data from Late Carboniferous to Early Permian sections without apparent unconformity in southwest China were evaluated to determine if the apparent pattern of species disappearance was caused by bias in fossil preservation associated with Early Permian sea-level changes. Statistical analysis suggests that the Early Permian event started in the Late Sakmarian with a significant drop of species diversity in the Robustoschwagerina ziyunensis Zone and continued through the Pamirina darvasica Zone of the Artinskian and into the Brevaxina dyhrenfurthi Zone of the Early Kungarian, resulted in a total loss of about 40% species diversity in the fusulinacean fauna. The Early Permian event is the most extensive bioevent in the history of fusulinacean Foraminifera at the species level although it is less significant at the generic level. Because a similar faunal change has been found among the fusulinacean assemblages in North America and in various regions of Tethys, this event may represent a major faunal turn-over in response to the Early Permian changes in sea level and could be of a global nature. Previous recognition of this event was hampered by Early Permian unconformities in North America and other regions of Tethys.  相似文献   

13.
The phylogeny of major families of Permian ammonoids is analyzed. The evolution of most families followed a typical scenario with distinct stages of early evolution, diversification, and decline. A smaller group followed a different evolutionary narrative, with indistinct stages. The former group includes families with both simple and complex morphology and a wide range of variation. The nature and trends in the evolution of the families may change depending on their phylogenetic stage. The Early Permian (Asselian), the second half of the Artinskian, and the beginning of the Middle Permian were marked by the most significant evolutionary changes. The Late Permian was the time of the decline of Paleozoic ammonoid orders and of the onset of the evolution of the Mesozoic order Ceratitida.  相似文献   

14.
滇西保山地区丁家寨组、卧牛寺组牙形刺的时代   总被引:7,自引:0,他引:7  
本首次描述了滇西保山卧牛寺组及永德丁家寨组的Rabeignathus牙形刺动物群,其中2个新种:Rabeignathus yunnanensis sp.nov.,R.ritterianus sp.nov.,并划分出3个牙形刺带,进一步确定了古生物地层工作争论已久的卧牛寺组的时代为Artinskian晚期-Kungurian早期;丁家寨组上段为Sakmarian晚期-Artinskian早期。该牙形刺动物群为暖温型动物群,结合保山地块当时的古地磁资料,丁家寨组、卧牛寺组沉积之时,应处于边缘冈瓦纳区。卧牛寺组玄武岩喷发时间的确定,预示了保山地块从边缘冈瓦纳区分离出来的时间为Artinskian晚期。  相似文献   

15.
New sampling on critical intervals of the uppermost Permian and Triassic successions of the Northern Karakorum Terrain in the Karakorum Range (Pakistan) has refined the stratigraphy. Two types of successions may be distinguished in the Karakorum Range: a carbonate platform succession, spanning the whole interval from Upper Permian to Upper Triassic, possibly with several gaps; and a basinal succession, deposited from the Middle Permian to Early Carnian (Late Triassic), when the carbonate platform prograded into the basin. With the approaching and later docking of the Karakorum Block against the Asian margin closing the Paleo-Tethys, a portion of Karakorum emerged while another part subsided as a fore-deep, receiving clastics from the emerging Cimmerian Range. Molassic sediments filled the basin, whilst shallow-water carbonates transgressed over the emerged carbonate platform sometime between the latest Triassic and the Pliensbachian (Early Jurassic), with Cimmerian deformation occurring to the north. The age control is provided by conodonts, with assemblages of late Wuchiapingian, Changhsingian, Induan (Griesbachian and Dienerian), late Olenekian, early Anisian, late Ladinian, and early Carnian ages, respectively. Some information on the section around the P/T boundary is provided by palynology and isotopic C13 values. The dating of the Norian/Rhaetian platform is provided by foraminifers.  相似文献   

16.
云南哀牢山缝合带由于长期未找到晚石炭世至二叠纪深海环境的化石及沉积地层记录,对哀牢山古特提斯盆地演化历史存在着不同认识。文中报道了采自云南墨江坝留地区上三叠统歪古村组底砾岩中的早石炭世和中二叠世放射虫化石,所有放射虫化石发现于4件燧石质砾石中,共计11属9种和7未定种及1属种未定放射虫。其中,3件砾石含有Albaillella deflandrei Gourmelon,Albaillella sinuosa Won and Seo等早石炭世放射虫化石组合,另1件砾石含有Pseudoalbaillella spp.,Quadricaulis scalae Caridroit and De Wever,Cauletella sp.和Ishigaum sp.等中二叠世放射虫化石组合。由此表明,哀牢山缝合带存在着早石炭世和中二叠世深海盆地沉积地层记录,哀牢山深海盆地应该在中二叠世之后封闭。该成果为探讨哀牢山古特提斯盆地演化提供了放射虫古生物学证据,进而说明哀牢山缝合带与金沙江缝合带一样,也存在石炭纪和二叠纪深水洋盆沉积地层记录,指示其演化历史是相同的。  相似文献   

17.
New data from the Berchtesgaden Alps result in a reconstruction of the Mesozoic-Cenozoic geodynamic history of the Northern Calcareous Alps. The closure of the western part of the Neotethys Ocean started in the late Early Jurassic and is evidenced by the onset of thick clay-rich sediments in the outer shelf area (=Hallstatt realm). The Middle to early Late Jurassic contraction is documented by the migration of trench-like basins formed in front of a propagating thrust belt. Due to ophiolite obduction, these basins propagated from the outer shelf area, forming there the Bajocian to Oxfordian Hallstatt Mélange, to the Hauptdolomit/Dachstein platform area, where the Oxfordian Rofan and Tauglboden Mélanges were formed. The basins were separated by nappe fronts forming structural highs. This scenario mirrors syn-orogenic erosion and deposition in an evolving thrust belt. Active basin formation and nappe thrusting ended around the Oxfordian/Kimmeridgian boundary, which was followed by the onset of carbonate platforms on structural highs prograding towards the former basins in latest Oxfordian to Early Tithonian time. Underfilled basins remained between the platforms. Rapid deepening around the Early/Late Tithonian boundary was induced by extension due to mountain uplift and resulted in the reconfiguration of the platforms and basins related to normal and probably strike-slip faults. Erosion of the uplifted nappe stack including obducted ophiolites caused final drowning and demise of the platforms in the Berriasian. The remaining Early Cretaceous basins were filled up with molasse sediments including siliciclastics until Aptian. Around the Early/Late Cretaceous boundary again extension and strike-slip movements started, followed by Eocene thrusting and Miocene strike-slip movements with block rotations. These younger tectonic movements destroyed the Triassic to Early Cretaceous palaeogeography and arranged the modern block configuration. The described Jurassic to Early Cretaceous history corresponds with that of the Western Carpathians, the Dinarides, and the Albanides, where (1) age dating of the metamorphic soles prove late Early to Middle Jurassic inneroceanic thrusting followed by late Middle to early Late Jurassic ophiolite obduction, (2) Kimmeridgian to Tithonian shallow-water platforms formed on top of the obducted ophiolites, and (3) latest Jurassic to Early Cretaceous sediments show postorogenic character. Therefore, we correlate the Jurassic geodynamic evolution of the Northern Calcareous Alps with the closure of the western part of the Neotethys Ocean.  相似文献   

18.
Triassic in Iran     
Kazem Seyed-Emami 《Facies》2003,48(1):91-106
Summary Except of the Nakhlak and Aghdarband regions, Lower and Middle Triassic strata in Iran consist almost exclusively of carbonate rocks built on vast platforms along the shelves of the Paleo- and Neotethys. The depositional environments varied from shallow shelf sea to lagoonal and near-shore tidal flats, becoming even evaporitic towards the coastal regions of the Persian Gulf. During the early Late Triassic the formerly dominating platform carbonates were strongly reduced, being restricted for the rest of the Early Mesozoic to Southwest Iran which remained on the northern passive margin of Gondwana (later Arabian Plate). On the Iran Plate otherwise, as a result of the closure of the Paleotethys and the continent-continent collision with the southern active margin of Eurasia (Turan Plate), there was a change to thick siliciclastic and molassic sediments with only minor carbonate content durig the Upper Triassic and Lower Jurassic. Geographically restricted and completely different sequences of thick volcanoclastic and basinal Triassic sediments are known from Nakhlak in Central and from Aghdarband in Northeast Iran, both interpreted as remanents of the northern Paleotethys margin (Turan Plate).  相似文献   

19.
In the Early Carboniferous-Bashkirian the most diverse ammonoid assemblages were associated with deep-water settings of the outer shelf and the carbonate platform slope. At the end of the Early Bashkirian, ammonoid assemblages of basins of the eastern slope of the South Urals were associated with shallow-water settings and bioherm buildups, which probably contributed to their endemism. New species of the genera Neogoniatites, Schartymites, and Stenoglaphyrites are described from localities of the eastern slope of the South Urals.  相似文献   

20.
The main aim of this paper is to review Middle Permian through Middle Triassic continental successions in European. Secondly, areas of Middle–Late Permian sedimentation, the Permian–Triassic Boundary (PTB) and the onset of Triassic sedimentation at the scale of the westernmost peri-Tethyan domain are defined in order to construct palaeogeographic maps of the area and to discuss the impact of tectonics, climate and sediment supply on the preservation of continental sediment.At the scale of the western European peri-Tethyan basins, the Upper Permian is characterised by a general progradational pattern from playa-lake or floodplain to fluvial environments. In the northern Variscan Belt domain, areas of sedimentation were either isolated or connected to the large basin, which was occupied by the Zechstein Sea. In the southern Variscan Belt, during the Late Permian, either isolated endoreic basins occurred, with palaeocurrent directions indicating local sources, or basins underwent erosion and/or there was no deposition. These basins were not connected with the Tethys Ocean, which could be explained by a high border formed by Corsica–Sardinia palaeorelief and even parts of the Kabilia microplate. The palaeoflora and sedimentary environments suggest warm and semi-arid climatic conditions.At the scale of the whole study area, an unconformity (more or less angular) is observed almost everywhere between deposits of the Upper Permian and Triassic, except in the central part of the Germanic Basin. The sedimentation gap is more developed in the southern area where, in some basins, Upper Permian sediment does not occur. The large sedimentary supply, erosion and/or lack of deposition during the Late Permian, as well as the variable palaeocurrent direction pattern between the Middle–Late Permian and the Early Triassic indicate a period of relief rejuvenation during the Late Permian. During the Induan, all the intra-belt basins were under erosion and sediment was only preserved in the extra-belt domains (the northern and extreme southern domains). In the northern domain (the central part of the Germanic Basin), sediment was preserved under the same climatic conditions as during the latest Permian, whereas in the extreme southern domain, it was probably preserved in the Tethys Ocean, implying a large amount of detrital components entering the marine waters. Mesozoic sedimentation began in the early Olenekian; the ephemeral fluvial systems indicate arid climatic conditions during this period. Three distinct areas of sedimentation occur: a northern and southern domain, separated by an intra-belt domain. The latter accumulated sediments during the Early–Middle Permian and experienced erosion and/or no-deposition conditions between the Middle–Late Permian and the beginning of Mesozoic sedimentation, dated as Anisian to Hettangian. At the top of the Lower Triassic, another tectonically induced, more or less angular unconformity is observed: the Hardegsen unconformity, which is dated as intra-Spathian and is especially found in the North European basins. This tectonic activity created new source areas and a new fluvial style, with marine influences at the distal part of the systems. During the Anisian and Ladinian, continental sedimentation was characterised by a retrogradational trend. In other words, the fluvial system evolved into fluvio-marine environments, attesting to a direct influence of the Tethys Ocean in the southern and northern domains. Both at the end of the Olenekian (Spathian) and during the Anisian, the presence of palaeosols, micro- and macrofloras indicate less arid conditions throughout this domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号