首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The interaction between human natural killer (NK) cells and NK-susceptible target cells, as well as the mechanism involved in target cell lysis, were studied with scanning electron microscopy (SEM). Low density human peripheral blood lymphocytes, highly enriched with large granular lymphocytes (LGL), were used as effector cells, and K562-cells were used as NK-susceptible target cells. The surface features of LGL/NK cells were examined under SEM. In the area of interaction, NK/target-cell conjugates showed microvilli and/or filipodia, and extensive areas of intercellular contact. In addition, the effector cells in some NK/target-cell conjugates were polarized toward the target cell. Changes in target cell surface features included loss of microvilli, large surface blebs and the appearance of small pore-like lesions on the cell membrane. Our findings show that target cell lysis occurred by apoptosis and plasma membrane lesions analogous to those seen during complement-mediated cytotoxicity.  相似文献   

2.
The effect of four different microtubule (MT) inhibitors on the various stages of human natural killer (NK) cell-mediated cytotoxicity was studied. The MT-disrupting effect of the drugs was monitored by indirect immunofluorescence microscopy and transmission electron microscopy. All the drugs tested, vinblastine sulfate, demecolcine, nocodazole, and taxol, had only a slight inhibitory effect on NK activity. Cells with nonfunctional MT were capable of normal conjugate formation and polarization of actin-containing microfilaments. Natural killer cell cytotoxic factor (NKCF) activity produced by cells with nonfunctional MT was slightly diminished. MT disruption caused enlargement of Golgi cisternae, but did not, however, dissociate the overall structural organization of the Golgi complex. The results indicate that fresh human NK cells are capable of lytic activity without functional MT although MT play a small supportive role in production or secretion of NKCF and mediation of the lytic activity. Previous experiments by us and others have strongly suggested that NK cells mediate their cytolytic activity by directed secretion of toxic material. As NK cells with unfunctional microtubules are capable of close to normal secretion the results presented in this report are not inconsistent with the earlier suggested stimulus-secretion model.  相似文献   

3.
4.
NK cells can mediate either FcR-dependent cytotoxicity against antibody-coated target cells or direct cytotoxicity against a variety of tumor cells. We used homogeneous, cloned populations of CD16+/CD3- human NK cells to characterize and compare the transmembrane signaling mechanisms used during these alternative forms of cytotoxicity. Cross-linkage of NK cell FcR with anti-FcR (anti-CD16) mAb or direct binding to NK-sensitive tumor targets resulted in a rapid release of inositol phosphates and increases in [Ca2+]i. The receptor-dependent [Ca2+]i increase (as monitored in indo-1 loaded NK cells by flow cytometry) consisted of an initial release of calcium from intracellular stores, followed by a sustained influx of calcium across the plasma membrane. To assess the potential regulatory feedback role of protein kinase C (PKC) activation in these proximal signaling events, NK cells were pretreated with either PKC-activating phorbol esters, nonactivating phorbol ester homologs, or synthetic diacylglycerols. Brief pretreatment with activating phorbol esters rapidly inhibited, in a concentration-dependent manner, both phosphoinositide hydrolysis and increases in [Ca2+]i induced by FcR ligation, whereas pretreatment with an inactive phorbol ester had no effect. This acute inhibitory effect was not explained by FcR down-regulation, which occurred with more prolonged exposure to phorbol esters. In contrast, the phosphoinositide turnover and [Ca2+]i increase in NK cells stimulated with NK-sensitive tumor targets were not affected by prior exposure to PKC-activating phorbol esters. This differential regulatory effect of phorbol ester on proximal signaling was paralleled by a corresponding effect on cytotoxicity, i.e., phorbol ester-induced activation of PKC inhibited FcR-dependent cytotoxicity, but did not alter direct cytotoxicity against NK-sensitive tumor cells. These results indicate that PKC activation can differentially regulate alternative forms of NK cell-mediated cytotoxicity by rapidly and specifically desensitizing the FcR.  相似文献   

5.
Summary The contribution of natural cell-mediated cytotoxicity (NCMC) to tumor-directed cytotoxicity is unknown. This study was undertaken to correlate changes in NCMC to a single target cell (K-562) with responses to therapy in patients with small cell carcinoma of the lung, resectable stage I non-small cell carcinoma of the lung, and stage I and II melanomas. Data from these studies suggested that these patients have depressed levels of NCMC to K-562 compared with a normal age-matched control population. However, NCMC levels appear to fluctuate with tumor burden, being highest in patients with large tumor masses and lowest in patients with no clinical evidence of tumor following a successful response to therapy.  相似文献   

6.
The protective effects of interferons (IFNs) against NK cell-mediated cytotoxicity (NK-CMC) is well established. We report here that both recombinant tumor necrosis factor-alpha (TNF-alpha) and recombinant interleukin-1 alpha (IL-1 alpha) can also protect some adherent target cells (e.g., the amniotic cells WISH and the cervical epithelial carcinoma cells HeLa-229) from NK-CMC in a dose-dependent manner. Like in the case of IFNs, the level of conjugate formation between target and effector cells (nonadherent peripheral blood lymphocytes) is not affected by pretreatment of the target cells with either TNF-alpha or IL-1 alpha. However, while the main effect of IFNs is to reduce the ability of target cells to stimulate the release of NK cytotoxic factor (NKCF) from effector cells, TNF-alpha and IL-1 alpha do not affect this process but rather reduce the target cell sensitivity to the lytic effect of NKCF. Therefore TNF-alpha and IL-1 alpha induce resistance to NK-CMC by a mechanism that differs from the one attributed to IFNs. The protective effect of TNF-alpha and IL-1 alpha is not mediated by the induction of IFN-beta 2/IL-6.  相似文献   

7.
Recent evidence has implicated natural killer cytotoxic factors (NKCF) as the lytic mediators of NK cell-mediated cytotoxicity reactions. The objective of this study was to examine and compare some of the biochemical and functional characteristics of human, rat, and murine NKCF. Supernatants containing NKCF were generated by stimulating effector cells with Con A or U937 (for human PBL) or YAC-1 (for rodent spleen cells) and tested for cytotoxic activity in a 20-hour (rodent) or 24-hour (human) 51Cr release assay. NKCF activity was inactivated by heating to 63 degrees C, 8 M urea, pH 2, and reduction and alkylation. These factors were highly sensitive to trypsin, moderately sensitive to papain and resistant to neuraminidase. Adsorption of human NKCF to U937 cells is inhibited by mannose-6-phosphate and adsorption of rodent NKCF to YAC-1 cells is inhibited by alpha-methyl-D-mannoside and fructose-6-phosphate. Oxidation of NKCF with sodium periodate abolished lytic activity. Pretreatment of NKCF with Con A but not pretreatment of target cells inhibited lytic activity. NKCF activity eluted in a single broad band of apparent MW of 15,000-40,000 after fractionation by HPLC gel permeating chromatography. Pooled fractions containing NKCF activity were subjected to some of the same tests performed on whole supernatants. Test result with semipurified NKCF confirmed that these factors are inactivated by trypsin or sodium periodate and that mannose-6-phosphate inhibits their binding to target cells. There were no major differences observed in NKCF produced by the three different species whether stimulated by Con A or NK-sensitive tumor cells. The evidence indicates that NKCF are glycoproteins in which disulfide bonding is essential for lytic activity. Furthermore, it appears that carbohydrate residues expressed on NKCF molecules are involved in the binding of these factors to the target cell membrane.  相似文献   

8.
Unstimulated human peripheral blood mononuclear cells from healthy donors exhibited spontaneous cytotoxicity against noncultured solid tumor targets in a 12- to 24-hr 51Cr release or 111In release assay. Both purified monocytes (greater than 99% monocytes) and natural killer (NK)-enriched lymphocytes exhibited comparable levels of spontaneous cytotoxicity against fresh melanoma tumor targets. This cytotoxicity was observed under endotoxin-free conditions. NK-depleted lymphocytes did not lyse the melanoma targets. Culture supernatants of monocytes incubated with the melanoma tumor cells did not exhibit cytotoxic activity against these targets. Purified monocytes lacked NK activity against the K562 targets in a 4-hr 51Cr release assay. Treatment of the monocytes with anti-Leu 1 1b and anti-Leu7 monoclonal antibodies plus complement did not reduce monocyte-mediated lysis of the melanoma targets, demonstrating that contaminating NK cells, if any, were not responsible for the lysis of noncultured melanoma targets by monocytes. In contrast, Leu 1 1b+ NK cells were responsible for the lysis of the melanoma targets by NK-enriched lymphocytes. The addition of recombinant interferon-gamma (rIFN-gamma), but not lipopolysaccharide, into the 51Cr release assay or pretreatment of monocytes with rIFN-gamma significantly increased their cytotoxicity against noncultured solid tumor cells. Monocytes cultured for 3 days with medium alone lost their cytotoxic activity. The addition of rIFN-gamma from the beginning of these cultures prevented the loss of the cytotoxic activity of monocytes. In summary, both unstimulated monocytes and NK-enriched lymphocytes exhibit comparable levels of spontaneous cytotoxicity against fresh solid tumor targets.  相似文献   

9.
Carma1, a caspase recruitment domain-containing membrane-associated guanylate kinase, initiates a unique signaling cascade via Bcl10 and Malt1 in NK cells. Carma1 deficiency results in reduced phosphorylation of JNK1/2 and activation of NF-κB that lead to impaired NK cell-mediated cytotoxicity and cytokine production. However, the precise identities of the downstream signaling molecules that link Carma1 to these effector functions were not defined. Here we show that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is abundantly present in NK cells, and activation via NKG2D results in its phosphorylation. Lack of Carma1 considerably reduced TAK1 phosphorylation, demonstrating the dependence of TAK1 on Carma1 in NKG2D-mediated NK cell activations. Pharmacological inhibitor to TAK1 significantly reduced NK-mediated cytotoxicity and its potential to generate IFN-γ, GM-CSF, MIP-1α, MIP-1β, and RANTES. Conditional in vivo knockdown of TAK1 in NK cells from Mx1Cre(+)TAK1(fx/fx) mice resulted in impaired NKG2D-mediated cytotoxicity and cytokine/chemokine production. Inhibition or conditional knockdown of TAK1 severely impaired the NKG2D-mediated phosphorylation of ERK1/2 and JNK1/2 and activation of NF-κB and AP1. Our results show that TAK1 links Carma1 to NK cell-mediated effector functions.  相似文献   

10.
11.
The susceptibility of murine trophoblast cells to natural cell-mediated cytotoxicity has been assessed. Primary short-term cultures of murine trophoblast cells isolated from 14-day placentas were found to be resistant to endogenous and interferon-activated natural killer (NK) cells and natural cytotoxic cells. That the relevant target structures are expressed on the surface of trophoblast cells and accessible to the effectors was demonstrated by their ability to inhibit the lysis of NK-sensitive target cells (YAC-1) in a dose-dependent manner. The lytic resistance of trophoblast cells was unaffected by neuraminidase treatment, inhibition of protein synthesis, or extending the assay time to 12 hr. Moreover, trophoblast cells were resistant to antibody-dependent cell-mediated cytotoxicity when coated with an alloantibody capable of mediating their lysis in the presence of heterologous complement. Neither the preincubation of effector cells in concentrated trophoblast culture supernatants nor the direct exposure of effectors to monolayers of trophoblast cells inhibited their NK lytic activity, indicating that the secretion of a suppressive factor or the direct inactivation of the NK cells was not responsible for the observed resistance to lysis. These observations, together with previous results showing the resistance of trophoblast to cytotoxic T cell-mediated lysis, reveal that murine trophoblast cells possess a resistance mechanism against several forms of cell-mediated lysis. This feature of trophoblast cells at the maternal-fetal interface is likely to play an important role in protecting the fetoplacental allograft from immune rejection.  相似文献   

12.
Peripheral blood mononuclear cells (PBMC) from humans without antibodies to dengue 2 virus lysed dengue 2 virus-infected Raji cells to a significantly greater degree than uninfected Raji cells. The addition of mouse anti-dengue antibody increased the lysis of dengue-infected Raji cells by PBMC. Dengue 2 immune human sera also increased lysis of dengue-infected Raji cells by PBMC. These results indicate that both PBMC-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) can cause significant lysis of dengue-infected Raji cells. The lysis of infected Raji cells in the ADCC assay correlated with the dilution of dengue-specific antibody which was added, indicating the dengue virus specificity of the lysis of dengue virus-infected Raji cells. Alpha interferon (IFN alpha) was detected in the culture supernatant of PBMC and dengue-infected Raji cells. However, enhanced lysis of dengue-infected Raji cells by PBMC may not be due to the IFN produced, because neutralization of all IFN activity with anti-IFN alpha antibody did not decrease the lysis of dengue-infected cells, and effector cells pretreated with exogenous IFN alpha also lysed dengue-infected cells to a greater degree than uninfected cells. The effector cells responsible for lysis of dengue virus-infected Raji cells in the natural killer and ADCC assays were analyzed. Nonadherent PBMC caused more lysis than did adherent cells. Characterization of nonadherent cells with monoclonal antibodies showed that the predominant responsible effector cells were contained in OKM1+ and OKT3- fraction in the natural killer and ADCC assays.  相似文献   

13.
The present study was undertaken to evaluate the possible contribution of other cytokines to the lytic activity of NKCF-containing supernatants. We compared some of the functional properties of human NKCF and purified recombinant human rLT and rTNF. It was found that the target cell specificity of rLT was quite different from NKCF in that rLT was neither species specific nor NK specific. Furthermore, antibodies against rLT did not affect the lytic activity of NKCF. These results demonstrate that LT does not significantly contribute to the lytic activity mediated by NKCF. The target specificity of rTNF was found to be related to that of NKCF with the exception of one NK-resistant cell line that was lysed by rTNF in a 20-hr 51Cr-release assay. However, rTNF was not toxic to any of the target cells tested as assessed by trypan blue exclusion in a 20-hr assay unless the targets were labeled with 51Cr. In contrast, NKCF did kill target cells as detected by trypan blue exclusion that were not labeled with 51Cr. Further analysis of this mechanistic difference in the lytic activity of rTNF and NKCF revealed that rTNF in combination with either cycloheximide or mitomycin C but not IFN-gamma could lyse unlabeled U937 target cells. In addition, pretreatment of U937 target cells with nonradioactive Na2CrO4 at concentrations equivalent to that used to 51Cr-labeled cells resulted in their susceptibility to lysis by rTNF as assessed by trypan blue exclusion. These findings suggest that lysis of several susceptible target cells in 20 hr by rTNF requires the presence of additional agents that may be sublethally toxic and/or inhibitory to macromolecular synthesis. Antibody inhibition studies revealed that anti-TNF mediated from partial to complete inhibition of lysis of U937 by unfractionated supernatants containing NKCF. However, fractionation of such supernatants on chromatofocusing columns yielded two distinct peaks of activity eluting in the pH range of 5 to 6 and 7 to 8. Anti-TNF could inhibit the acidic form of NKCF but not the neutral form. It is concluded that NKCF activity is mediated in part by TNF or an antigenically related molecule as well as some other distinct factor(s). The lack of consistent inhibition of NK CMC by anti-TNF suggests that TNF alone is not sufficient to mediate NK activity, or else it is inaccessible to the added antibody.  相似文献   

14.
Previously we demonstrated that two consecutive in vitro irradiations of MCA 102 cells with high doses of UVC light (610 and 457 J/m2) resulted in a selection of a permanent line MCA 102UV that manifested high sensitivity to natural cell-mediated cytotoxicity (NCMC). In the present study analysis of the effector cells involved in lysis of these tumor cells was performed by comparing the cytotoxicity of normal spleen cells which mediated both NK and NC cell activity with (a) normal spleen cells in which NC activity was neutralized by anti-TNF Abs (NK+,NC-), (b) NK-depleted or NK-deficient spleen cells (NK-,NC+), and (c) NK-deficient or -depleted spleen cells with NC activity neutralized by anti-TNF Abs (NK-,NC-). Results of these studies indicate that lysis of the original MCA 102 tumor cells was relatively low and was mediated by NC cells. UV irradiation significantly increased MCA 102 tumor cell sensitivity to lysis by both NK and NC cells. Analysis of the mechanisms involved in UV-induced NK sensitivity revealed that UV irradiation increased tumor cell susceptibility to lytic NK-derived granules. NC sensitivity of MCA 102UV tumor cells was associated with their increase in sensitivity to TNF and selection of MCA 102UV cells for resistance to rTNF resulted in a decrease in their susceptibility to NC cells. To determine how fast UV-induced sensitivity to NCMC and rTNF can be established, 51Cr-labeled MCA 102 cells were irradiated in vitro with 38-304 J/m2 of UVC light and their sensitivity to lysis by spleen cells and rTNF was tested immediately in an 18-hr cytotoxicity assay. UV treatment with the same doses was repeated 12 days later. The data obtained showed that tumor cell sensitivity to NCMC and TNF appeared shortly after UV irradiation, was stable, and was further substantially augmented by the second round of UV treatment. Thus, in vitro UV irradiation of tumor cells could be an effective modulator of tumor cell sensitivity to TNF-dependent and TNF-independent cell-mediated cytotoxicity.  相似文献   

15.
Spleen cells from rats which had been hyperimmunized with mouse lymphokine-activated killer (LAK) cells, were fused with the mouse myeloma cell line, P3 X 63 Ag8.653. Antibodies secreted by 1500 cultures were selected by their blocking effect on LAK cell-mediated cytotoxicity in the absence of complement. Two monoclonal antibodies (KBA4 and KBA6) greatly inhibited the cytotoxic activity of LAK cells, which were induced from mouse spleen cells by culture with recombinant human interleukin 2 (r-IL-2). These antibodies also blocked the cytotoxic activity of natural killer (NK) cells, but activated macrophages (A-M phi) were only slightly sensitive to them. However, no effect of the antibodies on the cytotoxic activity of cytotoxic T lymphocytes (CTL) was detected. These data suggest that the specific antigen, lymphokine-activated cell-associated (LAA) antigen, defined by these monoclonal antibodies may be associated with the recognition mechanisms of broad-reactive killer (BRK) cell-mediated cytotoxicity. The observation that low levels of LAA antigen are distributed in all lymphoid cells and that it was significantly enhanced by treatment of the cells with r-IL-2 suggests that the antigen may be involved in lymphocyte-activation mechanisms. We also found that the LAA antigen consists of two distinct polypeptides with Mr of 180,000 and 95,000 Da, which are similar to that of LFA 1 antigen. However, the biological characteristics of LAA antigen did not coincide with those of LFA 1. Therefore, KBA MAb may recognize a carbohydrate epitope distinct from that of LFA 1.  相似文献   

16.
As previously reported, the culture of mouse spleen cells in the presence of high amounts of human rIL-2 for 4 days caused proliferation and generation of lymphokine-activated killer (LAK) cells, which could lyse a variety of tumor cells. However, an addition of PMA to the culture resulted in a striking inhibition of the generation of LAK cells. In contrast, IL-2-induced cell proliferation, IL-2R expression, and LFA-1 expression were enhanced by the addition of PMA. Kinetic studies revealed that the addition of PMA during the final 24 h, but not 4 h, of the culture was sufficient to inhibit the generation of LAK cells. The same inhibition of LAK activity was observed when 4-day cultured LAK cells were pretreated with PMA for over 12 h before cytotoxicity assay. Flow cytometry analysis showed that PMA pretreatment had no effect on the binding of LAK cells to target cells. PMA pretreatment of LAK cells caused total disappearance of protein kinase C (PKC) activity from LAK cells concomitant with the loss of LAK activity. However, PMA-pretreated LAK cells cultured for another 24 h in the absence of PMA revealed levels of PKC activity and cytotoxicity identical with untreated LAK cells. These results strongly suggest that PMA-induced down-regulation of LAK cell-mediated cytotoxicity is due to the inactivation of PKC-dependent transduction systems that are essential post LAK cell-target cell binding.  相似文献   

17.
Monocyte-mediated augmentation of human natural cell-mediated cytotoxicity   总被引:1,自引:0,他引:1  
Normal human monocytes can significantly and rapidly augment natural cell-mediated cytotoxicity (NCMC) against K562 target cells. Approximately 50% augmentation was observed after direct mixture of monocytes with autologous null cells in the 4-hr chromium-release assay. This effect was dependent on the number of monocytes, and B cells and granulocytes were not effective. Coculture of null cells with monocytes and subsequent recovery of null cells for use as effector cells also produced significantly elevated cytolytic activity. This effect was dependent upon the number of monocytes, the length of time of coculture, and the cell donor. Augmentation of NK activity was rapid and observed after 0.5-12 hr of coculture, but suppression was observed after 36 hr; augmentation was observed with high monocyte:null cell (1:1, 1:2) ratios, and no effect was generally observed with lower ratios (1:8). At the single-cell level, the augmentation was associated with an increase in the proportion of target-binding cells which were lytically active. The augmentation of NK activity by monocytes required close cellular proximity, was mediated by a factor which was active or induced only in close proximity of the effector and producer cells, and/or was mediated by a soluble factor with a molecular weight greater than 50,000. This new demonstration that monocytes can augment as well as suppress NCMC may represent another avenue by which NK cell activity may be modulated in vivo.  相似文献   

18.
Viscotoxins (Vts) are basic peptides expressed in mistletoe leaves, seeds and stems which have been shown to be cytotoxic to mammalian cells. The aim of this study was to analyse whether Vts were able to control and/or inhibit the growth of phytopathogenic fungi to obtain a clue to their biological function. Incubation of two Vt isoforms, VtA3 and VtB, at a final concentration of 10 µ M resulted in a complete blockage of the germination of spores from three different pathogenic fungi. It was also shown that lower concentrations than 10 µ M of VtA3 and VtB inhibit their mycelial growth in a dose-dependent manner. The protein dose required to inhibit the growth of Fusarium solani and Sclerotinia sclerotiorum to a 50% was between 1.5 and 3.75 µ M , which represents a potent activity. No significant differences in the antifungal potency for each Vt isoform, either VtA3 and VtB, were observed, although they have been shown to exert differential cytotoxicity on mammalian cells. It was also demonstrated that Vts act as fungicidal compounds. To explore the basis of the antifungal activity the ability of VtA3 to induce changes in membrane permeability and on the oxidative status of F. solani spores was analysed. By using a specific fluorescent probe on intact spores, it was demonstrated that VtA3 produces rapid changes in fungal membrane permeability. It also induces H2O2 production verified by a histochemical staining. The data presented in this study support a direct role of Vts in the plant defence determined by their lethal effect on fungal pathogens.  相似文献   

19.
Thermal stresses reduce natural killer cell cytotoxicity   总被引:2,自引:0,他引:2  
  相似文献   

20.

Background aims

Irradiation enhances the adhesion between natural killer (NK) cells and target cells by up-regulating intercellular adhesion molecule-1 (ICAM-1) on target cells. Therefore, we investigated the effect of irradiation-induced ICAM-1 expression on human cancer cells on NK cell–mediated cytotoxicity.

Methods

Expression levels of ICAM-1 on the target cell surface before and after irradiation of six human cancer cell lines (HL60, SKBR-3, T47D, HCT-116, U937 and U251) were analyzed by flow cytometry. Ex vivo expansion of NK cells from human peripheral blood mononuclear cells was performed by co-culture with irradiated K562 cells. The related adhesion molecule lymphocyte function–associated antigen 1 (LFA-1) on NK cells was analyzed by flow cytometry. An enzyme-linked immunosorbent assay was used to detect interferon-γ (IFN-γ), and WST-8 assays were performed to check NK cell cytotoxicity. Finally, blocking assays were performed using monoclonal antibodies against ICAM-1 or LFA-1.

Results

LFA-1 expression increased on NK cells after expansion (P?<0.001). The expression of ICAM-1 was significantly upregulated by irradiation after 24?h in various cell lines, including HL60 (P?<0.001), SKBR-3 (P?<0.001), T47D (P?<0.001) and U937 (P?<0.001), although the level of expression depended on the cell line. ICAM-1 expression was extremely low before and after irradiation in U251 cells. NK cell–mediated cytotoxicity increased after irradiation of HL60 (P?<0.001), SKBR-3 (P?<0.001), T47D (P?=?0.003), and U937 (P?=?0.004) cells, in which ICAM-1 expression was significantly increased after irradiation. IFN-γ production by NK cells in response to HL60 (P?<0.001) and T47D (P?=?0.011) cells significantly increased after irradiation. NK cell–mediated cytotoxicity against irradiated SKBR-3 (P?<0.001) and irradiated T47D cells (P?=?0.035) significantly decreased after blocking of ICAM-1. Blocking of LFA-1 on NK cells resulted in reduced cytotoxicity against irradiated HL60 (P?<0.001) and irradiated SKBR-3 (P?<0.001).

Conclusions

Irradiation upregulates ICAM-1 expression on the surface of human cancer cells and enhances activated NK cell–mediated cytotoxicity. Therefore, irradiation combined with NK cell therapy may improve the antitumor effects of NK cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号