首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porifera (sponges) constitute the lowest metazoan phylum. Experiments examined whether sponges can recognize self/nonself molecules. Cells from the marine sponge Suberites domuncula were incubated with membranes from either S. domuncula or another marine sponge, Geodia cydonium, as well as with recombinant alpha-integrin from G. cydonium. The cells responded immediately with a rise of intracellular Ca2+ ([Ca2+i]) if they were treated with membranes from G. cydonium but not after treatment by those from S. domuncula. This change of [Ca2+i] was also recorded with G. cydonium alpha-integrin. In parallel, the expression of two genes was strongly upregulated; one codes for a cytokine-related molecule, pre-B-cell colony-enhancing factor, and the other for profilin. These genes have previously been found to be highly expressed in human or echinoderm cells in the presence of xenogeneic proteins. Our data support the hypothesis that a primordial immune response system is present in sponges.  相似文献   

2.
3.
The siliceous marine sponge Suberites domuncula is a member of the most ancient and simplest extant phylum of multicellular animals-Porifera, which have branched off first from the common ancestor of all Metazoa. We have determined primary structures of 79 ribosomal proteins (r-proteins) from S. domuncula: 32 proteins from the small ribosomal subunit and 47 proteins from the large ribosomal subunit. Only L39 and L41 polypeptides (51 and 25 residues long in rat, respectively) are missing. The sponge S. domuncula is, after nematode Caenorhabditis elegans and insect Drosophila melanogaster the third representative of invertebrates with known amino acid sequences of all r-proteins. The comparison of S. domuncula r-proteins with r-proteins from D. melanogaster, C. elegans, rat, Arabidopsis thaliana and Saccharomyces cerevisiae revealed very interesting findings. The majority of the sponge r-proteins are more similar to their homologues from rat, than to those either from invertebrates C. elegans and D. melanogaster, or yeast and plant. With few exceptions, the overall sequence conservation between sponge and rat r-proteins is 80% or higher. The phylogenetic tree of concatenated r-proteins from 6 eukaryotic species (rooted with archaeal r-proteins) has the shortest branches connecting sponge and rat. Both model invertebrate organisms experienced recently accelerated evolution and therefore sponge r-proteins very probably better reflect structures of proteins in the ancestral metazoan ribosome, which changed only little during metazoan evolution. Furthermore, r-proteins from the plant A. thaliana are significantly closer to metazoan r-proteins than are those from the yeast S. cerevisiae.  相似文献   

4.
Sponges (phylum Porifera) represent the evolutionarily oldest metazoans that comprise already a complex immune system and are related to the crown taxa of the protostomians and the deuterostomians. Here, we demonstrate the existence of a tachylectin-related protein in the demosponge Suberites domuncula, termed Suberites lectin. The MAPK pathway was activated in response to lipopolysaccharide treatment of the three-dimensional cell aggregates, the primmorphs; this process was abolished by the monosaccharide D-GlcNAc. The cDNA encoding the S. domuncula lectin was identified and cloned; it comprises 238 amino acids (26 kDa) in the open reading frame. The deduced protein has one potential transmembrane region, three characteristic Cys residues, and six internal tandem repeats; it shares the highest sequence similarity with lectins from the horseshoe crab Tachypleus trunculus. The steady-state level of expression of the Suberites lectin rises in primmorphs in response to lipopolysaccharide, an effect that was prevented by co-incubation with D-GlcNAc. The natural sponge lectin was purified by affinity chromatography; it has a size of 27 kDa and displays antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus. The putative protein, deduced from the cloned gene, is identical/similar to the purified natural protein, as demonstrated by immunological cross-reactivity with specific antibodies. We conclude that the S. domuncula lectin acts as an antibacterial molecule involved in immune defense against bacterial invaders.  相似文献   

5.
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3+. We conclude that iron is an essential factor in proliferative and morphogenetic processes in primmorphs.  相似文献   

6.
Sponges (phylum Porifera) live in a symbiotic relationship with microorganisms, primarily bacteria. Until now, molecular proof for the capacity of sponges to recognize fungi in the surrounding aqueous milieu has not been available. Here we demonstrate, for the demosponge Suberites domuncula (Porifera, Demospongiae, Hadromerida), a cell surface receptor that recognizes (1-->3)-beta-D-glucans, e.g. curdlan or laminarin. This receptor, the (1-->3)-beta-D-glucan-binding protein, was identified and its cDNA analysed. The gene coding for the 45 kDa protein was found to be upregulated in tissue after incubation with carbohydrate. Simultaneously with the increased expression of this gene, two further genes showed an elevated steady state level of expression; one codes for a fibrinogen-like protein and the other for the epidermal growth factor precursor. Expression of the (1-->3)-beta-D-glucan-binding protein and the fibrinogen-like protein occurred in cells on the sponge surface, in the pinacoderm. By Western blotting, the product of the fibrinogen-like protein gene was identified, the recombinant protein isolated, and antibodies raised to this protein. Their application revealed that a 5 kDa factor is produced, which is apparently processed from the 77 kDa epidermal growth factor precursor. Finally, we provided evidence that a tyrosine kinase pathway is initiated in response to exposure to D-glucan; its phosphorylation activity could be blocked by aeroplysinin. In turn, the increased expression of the downstream genes was suppressed. We conclude that sponges possess a molecular mechanism for recognizing fungi via the d-glucan carbohydrates on their surfaces.  相似文献   

7.
Sponges (phylum Porifera) are the phylogenetically oldest metazoa; as filter feeders, they are abundantly exposed to marine microorganisms. Here we present data indicating that the demosponge Suberites domuncula is provided with a recognition system for gram-negative bacteria. The lipopolysaccharide (LPS)-interacting protein was identified as a receptor on the sponge cell surface, which recognizes the bacterial endotoxin LPS. The cDNA was isolated, and the protein (Mr 49,937) was expressed. During binding to LPS, the protein dimerizes and interacts with MyD88, which was also identified and cloned. The sponge MyD88 (Mr 28,441) is composed of two protein interaction domains, a Toll/interleukin-1 receptor domain (found in MyD88 and in Toll-like receptors) and a death domain (present in MyD88 and interleukin-1 receptor-associated kinase). Northern blot experiments and in situ hybridization studies showed that after LPS treatment, the level of the LPS-interacting protein remains unchanged, whereas MyD88 is strongly up-regulated. A perforin-like molecule (Mr 74,171), the macrophage-expressed protein, was identified as an executing molecule of this pathway. This gene is highly expressed after LPS treatment, especially at the surfaces of the animals. The recombinant protein possesses biological activity and eliminates gram-negative bacteria; it is inactive against gram-positive bacteria. These data indicate that S. domuncula is provided with an innate immune system against gram-negative bacteria; the ligand LPS (a pathogen-associated molecular pattern) is recognized by the pattern recognition receptor (LPS-interacting protein), which interacts with MyD88. A signal transduction is established, which results in an elevated expression of MyD88 as well as of the macrophage-expressed protein as an executing protein.  相似文献   

8.
Cetkovic H  Müller WE  Gamulin V 《Genomics》2004,83(4):743-745
Sponges, the simplest and most ancient phylum of Metazoa, encode in their genome complex and highly sophisticated proteins that evolved together with multicellularity and are found only in metazoan animals. We report here the finding of a Bruton tyrosine kinase (BTK)-like protein in the marine sponge Suberites domuncula (Demospongiae). The nucleotide sequence of one sponge cDNA predicts a 700-aa-long protein, which contains all of the characteristic domains for the Tec family of protein tyrosine kinases (PTKs). The highest homology (38% identity, 55% overall similarity) was found with human BTK and TEC PTKs. Sponge PTK was therefore named BtkSD. Human BTK is involved in the maturation of B cells and mutations in the BTK gene cause X-linked agammaglobulinemia. Kinases from the Tec family are not present in Caenorhabditis elegans and, until now, they were found only in insects and higher animal taxa. Our finding implies that the BTK/TEC genes are of a very ancient origin.  相似文献   

9.
10.
Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell-cell and cell-matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph system from S. domuncula was used. During the formation of these three-dimensional aggregates composed of proliferating cells, the expression of Iroquois depends on ferric iron and water current. An increased expression in response to water current is paralleled with the formation of canal-like pores in the primmorphs. It is suggested that Iroquois expression is involved in the formation of the aquiferous system, the canals in sponges and the canal-like structures in primmorphs.  相似文献   

11.
Sponges (phylum Porifera) represent the phylogenetically oldest metazoan animals. Recently, from the marine sponge Geodia cydonium a first cDNA encoding a putative integrin receptor molecule was isolated. In the present study basic functional experiments have been conducted to test the hypothesis that in sponges integrin polypeptides also function as adhesion molecules and as outside-in signaling molecules. The sponge Suberites domuncula has been used for the experiments because from this sponge only has a cell culture been established. Here we report that aggregation factor (AF)-mediated cell-cell adhesion is blocked by the RGDS peptide which is known to interact with beta integrin. Both RGDS and AF were found to stimulate DNA synthesis within 24 h. The beta subunit of the integrin receptor was cloned from S. domuncula; the estimated 91-kDa molecule comprises the characteristic signatures. Evolutionary conservation of the beta integrin was assessed by comparison with corresponding beta integrin subunits from evolutionary higher metazoan taxa. Addition of RGDS or of AF to isolated cells of S. domuncula causes a rapid (within 1-2 min) increase in the intracellular Ca2+ concentration which is further augmented in the presence of Ca2+. Furthermore, incubation of the cells with RGDS or AF causes an activation of the GTP-binding protein Ras. In addition it is shown that after a prolonged incubation of the cells with RGDS and AF the expression of the genes coding for Ras and for calmodulin is upregulated. These results suggest that the integrin receptor functions in the sponge system not only as adhesion molecule but also as a molecule involved in outside-in signaling.  相似文献   

12.
Sponges (phylum Porifera) live in an aqueous milieu that contains dissolved organic carbon. This is degraded photochemically by ultraviolet radiation to alkenes, particularly to ethylene. This study demonstrates that sponge cells (here the demosponge Suberites domuncula has been used), which have assembled to primmorphs, react to 5 microM ethylene with a significant up-regulation of intracellular Ca(2+) concentration and with a reduction of starvation-induced apoptosis. In primmorphs from S. domuncula the expression of two genes is up-regulated after exposure to ethylene. The cDNA of the first gene (SDERR) isolated from S. domuncula encodes a potential ethylene-responsive protein, termed ERR_SUBDO; its putative M(r) is 32,704. Data bank search revealed that the sponge polypeptide shares high similarity (82% on amino acid level) with the corresponding plant molecule, the ethylene-inducible protein from Hevea brasiliensis. Until now no other metazoan ethylene-responsive proteins have been identified. The second gene, whose expression is up-regulated in response to ethylene is a Ca(2+)/calmodulin-dependent protein kinase II. Its cDNA, SDCCdPK, encodes a M(r) 54,863 putative kinase that shares 69% similarity with the corresponding enzyme from Drosophila melanogaster. The expression of both genes in primmorphs from S. domuncula is increased by approximately 5-fold after a 3-day incubation period with ethylene. It is concluded that also metazoan cells, with sponge cells as a model, may react to ethylene with an activation of cell metabolism including gene induction.  相似文献   

13.
14.
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.  相似文献   

15.
  • 1.1. The protein (mol. wt 28.000) consists of four subunits, which are not equivalent as regards the chemical composition, although all of them lack free terminal amino groups.
  • 2.2. The single subunits also possess different conformations since both photosensitized oxidation studies and acrylamide-quenching experiments of the protein fluorescence emission show that the three tryptophyl residues have a different accessibility to the aqueous solvent.
  • 3.3. Circular dichroism and fluorescence polarization studies suggest that suberitine has a remarkable tight three-dimensional organization: e.g., exposure of suberitine to 6 M urea for several hours is necessary to obtain a general unfolding of the protein molecule.
  相似文献   

16.
Marine demosponges (phylum Porifera) are rich sources for potent bioactive compounds. With the establishment of the primmorph system from sponges, especially from Suberites domuncula, the technology to cultivate sponge cells in vitro improved considerably. This progress was possible after the elucidation that sponges are provided with characteristic metazoan cell adhesion receptors and extracellular matrix molecules which allow their cells a positioning in a complex organization pattern. This review summarizes recent data on the cultivation of sponges in aquaria and--with main emphasis--of primmorphs in vitro. It is outlined that silicon and Fe(+++) contribute substantially to the formation of larger primmorphs (size of 10 mm) as well as of a canal system in primmorphs; canals are probably required for an improved oxygen and food supply. We conclude that the primmorph system will facilitate a sustainable use of sponges in the production of bioactive compounds; it may furthermore allow new and hitherto not feasible insights into basic questions on the origin of Metazoa.  相似文献   

17.
18.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

19.
Embryonic chick RNA was translated in a cell-free system derived from wheat germ. One of the products synthesized in vitro under the direction of this RNA could be identified as collagen on the basis of collagenase digestion experiments and sodium dodecylsulfate-acrylamide gel electrophoresis. By submitting the RNA to chromatography on oligo(dT)-cellulose, a 26-30-fold enrichment of the mRNA coding for collagen was achieved.  相似文献   

20.
Recently, we reported that cells from the sponge Suberites domuncula respond to ethylene with an increase in intracellular Ca(2+) level [Ca(2+)](i), and with an upregulation of the expression of (at least) two genes, a Ca(2+)/calmodulin-dependent protein kinase and the potential ethylene-responsive gene, termed SDSNZERR (A. Krasko, H.C. Schr?der, S. Perovic, R. Steffen, M. Kruse, W. Reichert, I.M. Müller, W.E.G. Müller, J. Biol. Chem. 274 (1999)). Here, we describe for the first time that also mammalian (3T3) cells respond to ethylene, generated by ethephon, with an immediate and transient, strong increase in [Ca(2+)](i). Next, the promoter for the sponge SDSNZERR gene was isolated from S. domuncula. It was found that the SDSNZERR gene is positioned adjacent to the SNZ-related gene (SNZ-proximal open reading frame) (SDSNO) and linked, as in Saccharomyces cerevisiae, in a head-to-head manner. Until now, neither homologues nor orthologues of these two genes have been identified in higher metazoan phyla. The full-length genes share a bidirectional promoter. 3T3 cells were transfected with this promoter; the activity of the SDSNZERR promoter was strong and twice as high as that of the SV40 promoter, while the SDSNO promoter was less active. Surprisingly, the activity of the SDSNZERR promoter could not be modulated by ethylene or salicylic acid while it is strongly upregulated, by 4-fold, under serum-starved conditions. It is concluded that the modulation of the level of [Ca(2+)](i) by ethylene in mammalian cells is not correlated with an upregulation of the ethylene-responsive gene SDSNZERR. The data indicate that in mammalian cells, the activity of the SDSNZERR promoter is associated with the repression of serum-mediated growth arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号