首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of melphalan-O-carboxymethyl chitosan (Mel-OCM-chitosan) conjugates with different spacers were prepared and structurally characterized. All conjugates showed satisfactory water-solubility (160-217 times of Mel solubility). In vitro drug release behaviors by both chemical and enzymatic hydrolysis were investigated. The prodrugs released Mel rapidly within papain and lysosomal enzymes of about 40–75%, while released only about 4–5% in buffer and plasma, which suggested that the conjugates have good plasma stability and the hydrolysis in both papain and lysosomes occurs mostly via enzymolysis. It was found that the spacers have important effect on the drug content, water solubility, drug release properties and cytotoxicity of Mel-OCM-chitosan conjugates. Cytotoxicity studies by MTT assay demonstrated that these conjugates had 52–70% of cytotoxicity against RPMI8226 cells in vitro as compared with free Mel, indicating the conjugates did not lose anti-cancer activity of Mel. Overall these studies indicated Mel-OCM-chitosan conjugates as potential prodrugs for cancer treatment.  相似文献   

2.
This paper describes the development of a new class of N-linked imidazoles as potential pH-sensitive, cleavable linkers for use in cancer drug delivery systems. Kinetic analysis of eight derivatives of N-ethoxybenzylimidazoles (NEBIs) showed that their rates of hydrolysis are accelerated in mild aqueous acidic solutions compared to in solutions at normal, physiological pH. Incorporation of electron donating or electron withdrawing substituents on the phenyl ring of the NEBI resulted in the ability to tune the rates of hydrolysis under mild acidic conditions with half-lives ranging from minutes to months. A derivative of NEBI carrying doxorubicin, a widely used anticancer agent, also showed an increased rate of hydrolysis under mild acid compared to that at normal physiological pH. The doxorubicin analogue resulting from hydrolysis from the NEBI exhibited good cytotoxic activity when exposed to human ovarian cancer cells. These results demonstrate a potentially useful, general strategy for conjugating a wide range of drugs to imidazole-containing delivery vessels via NEBI functionalities for controlled release of therapeutics for drug delivery applications.  相似文献   

3.
Glycoconjugates can be readily formed by the condensation of a free-reducing terminus and a strong α-effect nucleophile, such as a hydrazide or a hydroxylamine. Further characterization of a series of glycoconjugates formed from xylose, glucose and N-acetylglucosamine, and either p-toluenesulfonyl hydrazide or an N-methylhydroxylamine, was carried out to gain insight into the optimal conditions for the formation of these useful conjugates, and their stability. Their apparent association constants (9-74 M−1) at pH 4.5; as well, as rate constants for hydrolysis, at pH 4.0, 5.0 and 6.0 (37 °C), were determined. The half-lives of the conjugates varied between 3 h and 300 days. All the compounds were increasingly stable as the pH approached neutrality. Conjugate hydrolysis rates mirrored those found for O-glycoside hydrolysis where conjugates formed from electron-rich monosaccharides hydrolyzed more rapidly.  相似文献   

4.
Water soluble cellulose ethers, including methylcellulose and two hydroxyethylcelluloses with different molecular weights, were conjugate with indomethacin at room temperature. The chemical structures of the conjugates were characterized by FTIR, 1H NMR and UV–vis spectroscopy. The results confirmed that different amounts of IND residues were covalently bonded to cellulose ether backbones through ester linkages. Their anaerobic biodegradation in colonic fermentation was investigated by gel permeation chromatography, gas chromatography and UV–vis spectroscopy. These conjugates were found to have different biodegradabilities, depending on the cellulose ether used and the amount of conjugated indomethacin residues. In vitro release experiments showed that hydroxyethylcellulose-based conjugates with low IND residues content could exhibit a sustained drug release behavior in colonic fermentation and were stable in the simulated media of the stomach and small intestine. Therefore, they are promising candidates for future applications in colon-specific drug delivery.  相似文献   

5.
In this report, we present an acid-sensitive drug delivery vehicle, termed polyketal nanoparticles, which are designed to target therapeutics to the acidic environments of tumors, inflammatory tissues, and phagosomes. The polyketal nanoparticles are formulated from poly(1,4-phenyleneacetone dimethylene ketal) (PPADK), a new hydrophobic polymer which contains ketal linkages in its backbone. The polyketal nanoparticles undergo acid-catalyzed hydrolysis into low molecular weight hydrophilic compounds and should therefore release encapsulated therapeutics at an accelerated rate in acidic environments. Importantly, the polyketal nanoparticles do not generate acidic degradation products after hydrolysis, as with polyester-based biomaterials. Dexamethasone-loaded nanoparticles, 200-600 nm in diameter, were fabricated with PPADK via an emulsion procedure using chloroform and water. The hydrolysis half-life of PPADK was measured to be 102 h at pH 7.4 and 35 h at pH 5.0. PPADK was synthesized by a new polymerization strategy based on the acetal exchange reaction. This new delivery system should find numerous applications in the field of drug delivery because of its ease of synthesis and excellent degradation properties.  相似文献   

6.
A set of aliphatic and aromatic aldehyde-derived hydrazone (HZ)-based acid-sensitive polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugates was synthesized and evaluated for their hydrolytic stability at neutral and slightly acidic pH values. The micelles formed by aliphatic aldehyde-based PEG-HZ-PE conjugates were found to be highly sensitive to mildly acidic pH and reasonably stable at physiologic pH, while those derived from aromatic aldehydes were highly stable at both pH values. The pH-sensitive PEG-PE conjugates with controlled pH sensitivity may find applications in biological stimuli-mediated drug targeting for building pharmaceutical nanocarriers capable of specific release of their cargo at certain pathological sites in the body (tumors, infarcts) or intracellular compartments (endosomes, cytoplasm) demonstrating decreased pH.  相似文献   

7.
Y Xu  E T Kool 《Nucleic acids research》1998,26(13):3159-3164
We describe physicochemical and enzymatic properties of 5' bridging phosphorothioester linkages at specific sites in DNA oligonucleotides. The susceptibility to hydrolysis at various pH values is examined and no measurable hydrolysis is observed at pH 5-9 after 4 days at 25 degrees C. The abilities of three 3'- and 5'-exonuclease enzymes to hydrolyze the DNA past this linkage are examined and it is found that the linkage causes significant pauses at the sulfur linkage for T4 DNA polymerase and calf spleen phosphodiesterase, but not for snake venom phosphodiesterase. Restriction endonuclease (Nsi I) cleavage is also attempted at a 5'-thioester junction and strong resistance to cleavage is observed. Also tested is the ability of polymerase enzymes to utilize templates containing single 5'-S-thioester linkages; both Klenow DNA polymerase and T7 RNA polymerase are found to synthesize complementary strands successfully without any apparent pause at the sulfur linkage. Finally, the thermal stabilities of duplexes containing such linkages are measured; results show that T m values are lowered by a small amount (2 degrees C) when one or two thioester linkages are present in an otherwise unmodified duplex. The chemical stability and surprisingly small perturbation by the 5' bridging sulfur make it a good candidate as a physical and mechanistic probe for specific protein or metal interactions involving this position in DNA.  相似文献   

8.
The synthesis and complete characterization of both norbornene-derived doxorubicin (mono 1) and polyethylene glycol (mono 2) monomers are clearly described, and their copolymerization by ring-opening metathesis polymerization (ROMP) to get the block copolymer (COPY-DOX) is vividly elaborated. The careful design of these conjugates exhibits properties like well-shielded drug moieties and well-defined nanostructures; additionally, they show solubility in both water and biological medium and also have the important tendency of rendering acid-triggered drug release. The drug release profile suggests the importance of having the hydrazone linker that helps to release the drug exactly at the mild acidic conditions resembling the pH of the cancerous cells. It is also observed that the drug release from micelles of COPY-DOX is significantly accelerated at a mildly acidic pH of 5.5-6, compared to the physiological pH of 7.4, suggesting the pH-responsive feature of the drug delivery system with hydrazone linkages. Confocal laser scanning microscopy (CLSM) measurements indicate that these COPY-DOX micelles are easily internalized by living cells. MTT assays against HeLa and 4T cancer cells showing COPY-DOX micelles have a high anticancer efficacy. All of these results demonstrate that these polymeric micelles that self-assembled from COPY-DOX block copolymers have great scope in the world of medicine, and they also symbolize promising carriers for the pH-triggered intracellular delivery of hydrophobic anticancer drugs.  相似文献   

9.
Preparation of protein conjugates via intermolecular hydrazone linkage   总被引:8,自引:0,他引:8  
T P King  S W Zhao  T Lam 《Biochemistry》1986,25(19):5774-5779
Proteins can be modified at their amino groups under gentle conditions to contain an average of three to six aryl aldehyde or acyl hydrazide groups. These two types of modified proteins at about 10 microM concentration condense with each other at pH approximately 5 to form conjugates linked by hydrazone bonds. Under proper conditions conjugates mainly of dimers and trimers in size or, if desired, higher oligomers can be obtained. The conjugates can be dissociated to their individual protein components by an exchange reaction with an excess of acetyl hydrazide. The reversible hydrazone bonds of conjugates can be reduced with NaCNBH3 to give stable hydrazide bonds. The stability of protein-hydrazone conjugates was found to be significantly greater than that of the model compound, the N-acetylhydrazone of p-carboxybenzaldehyde. This difference is believed to result from the presence of multiple hydrazone linkages in protein conjugates.  相似文献   

10.
The objective of this study was to develop a sustained-release drug delivery system for 5-fluorouracil (5-FU) to improve its short half-life. 5-Fluorouracil-1-acetic acid (FUAC) was prepared and then conjugated to hydroxyethyl starch (HES) through ester bonds. The conjugates were relatively stable in acidic buffer solution at pH 5.8 and slowly released FUAC but became more sensitive to hydrolysis with an increase in the pH and temperature. The conjugates were degraded to FUAC both in human and rat plasma with half-time life of 20.4 h and 24.6 h, respectively. Both 5-FU and FUAC were released in a rat liver homogenate following a 12 h incubation of the conjugates. The pharmacokinetic behavior was evaluated in rats after intravenous injection of 5-FU, FUAC and the conjugates. The drug release data in vitro and in vivo indicated that HES is a promising carrier for the sustained-release of antitumor drugs.  相似文献   

11.
Psoralens are well-known photosensitizers, and 8-methoxypsoralen and 4,5',8-trimethylpsoralen are widely used in photomedicine as "psoralens plus UVA therapy" (PUVA), in photopheresis, and in sterilization of blood preparations. In an attempt to improve the therapeutic efficiency of PUVA therapy and photopheresis, four poly(ethylene glycol) (PEG)-psoralen conjugates were synthesized to promote tumor targeting by the enhanced permeability and retention (EPR) effect. Peptide linkers were used to exploit specific enzymatic cleavage by lysosomal proteases. A new psoralen, 4-hydroxymethyl-4',8-dimethylpsoralen (6), suitable for polymer conjugation was synthesized. The hydroxy group allowed exploring different strategies for PEG conjugation, and linkages with different stability such ester or urethanes were obtained. PEG (5 kDa) was covalently conjugated to the new psoralen derivative using four different linkages, namely, (i) direct ester bond (7), (ii) ester linkage with a peptide spacer (8), (iii) a carbamic linker (9), and (iv) a carbamic linker with a peptide spacer (12). The stability of these new conjugates was assessed at different pHs, in plasma and following incubation with cathepsin B. Conjugates 7 and 8 were rapidly hydrolyzed in plasma, while 9 was stable in buffer and in the presence of cathepsin B. As expected, only the conjugates containing the peptide linker released the drug in presence of cathepsin B. In vitro evaluation of the cytotoxic activity in the presence and absence of light was carried out in two cell lines (MCF-7 and A375 cells). Conjugates 7 and 8 displayed a similar activity to the free drug (probably due to the low stability of the ester linkage). Interestingly, the conjugates containing the carbamate linkage (9 and 12) were completely inactive in the dark (IC50 > 100 microM in both cell lines). However, antiproliferative activity become apparent after UV irradiation. Conjugate 12 appears to be the most promising for future in vivo evaluation, since it was relatively stable in plasma, which should allow tumor targeting and drug release to occur by cathepsin B-mediated hydrolysis.  相似文献   

12.
The anti-MUC1 antibody, CTM01, has been chosen to target the potently cytotoxic calicheamicin antitumor antibiotics to solid tumors of epithelial origin that express this antigen. Earlier calicheamicin conjugates relied on the attachment of a hydrazide derivative to the oxidized carbohydrates that occur naturally on antibodies. This produced a "carbohydrate conjugate" capable of releasing active drug by hydrolysis in the lysosomes where the pH is low. Conjugates have now been made that are formed by reacting a calicheamicin derivative containing an activated ester with the lysines of antibodies. This gives an "amide conjugate" that is stable to hydrolysis, leaving the disulfide that is present in all calicheamicin conjugates as the only likely site of drug release from the conjugate. As previously shown for the carbohydrate conjugate, this amide conjugate of CTM01 produces complete regressions of xenograft tumors at doses of 300 microg/kg (calicheamicin equivalents) given three times. This indicates that hydrolytic drug release is not necessary for potent, selective cytotoxicity for calicheamicin conjugates of CTM01. Although the unconjugated calicheamicins are in general less active in cells expressing the multidrug resistance phenotype, both in vitro and in vivo results of studies reported here suggest that the efficacy of the calicheamicins toward such tumors is unexpectedly enhanced by antibody conjugation, especially for the "amide conjugate". These hydrolytically stable conjugates are also active toward cisplatin-resistant ovarian carcinoma cells as well. Such studies indicate that the calicheamicin amide conjugate of CTM01 may have potential for the treatment of MUC1-positive solid tumors, including some types of resistant tumors.  相似文献   

13.
A crude cell extract from a mixed bacterial culture growing on parathion, an organophosphate insecticide, hydrolyzed parathion (21 C) at a rate of 416 nmol/min per mg of protein. This rate of enzymatic hydrolysis, when compared with chemical hydrolysis by 0.1 N sodium hydroxide at 40 C, was 2, 450 times faster. Eight of 12 commonly used organophosphate insecticides were enzymatically hydrolyzed with this enzyme preparation at rates ranging from 12 to 1,360 nmol/min per mg of protein. Seven pesticides were hydrolyzed at rates significantly higher (40 to 1,005 times faster) than chemical hydrolysis. The pH optimum for enzymatic hydrolysis of the eight pesticides ranged from 8.5 to 9.5, with less than 50% of maximal activity expressed at pH 7.0. Maximal enzyme activity occurred at 35 C. The crude extract lost its activity at the rate of only 0.75%/day when stored at 6 C. Eight organic solvents, ranging from methanol to hexane, at low concentrations stimulated enzymatic hydrolysis by 3 to 20%, whereas at higher concentrations (1,000 mg/liter) they inhibited the reaction (9 to 50%). Parathion metabolites p-nitrophenol, hydroquinone, and diethylthiophosphoric acid, at up to 100-mg/liter concentrations, did not significantly influence enzyme activity.  相似文献   

14.
Optimal pH, temperature, and concentration of enzyme conditions for the rate of hydrolysis of five isoflavone conjugates (daidzein, O-desmethylangolensin, equol, genistein, and glycitein) and two lignans (enterodiol and enterolactone) from two biological matrices (urine and plasma) were studied using beta-glucuronidase from Helix pomatia. In addition, the use of mixtures of beta-glucuronidase and sulfatase enzymes from different sources was investigated to find enzyme preparations that contained lower amounts of naturally present phytoestrogens. Quantification of aglycones spiked with (13)C(3)-labeled internal standards was carried out by LC-MS/MS. In urine, all of the phytoestrogen conjugates hydrolyzed within 2h under standard hydrolysis conditions (24mul H. pomatia, pH 5, 37 degrees C). Hydrolysis rates were improved at 45 degrees C and by doubling the enzyme concentration and may be used to further reduce hydrolysis times down to 100min. In plasma, a 16-h hydrolysis was required to ensure complete hydrolysis of all conjugates. As with urine, the use of increased temperature or increased enzyme concentration reduced hydrolysis times for most analytes. However, the rate of hydrolysis in plasma was significantly slower than that in urine for all analytes except enterodiol, for which the reverse was true. Neither increased temperature nor increased enzyme concentration increased the rate of hydrolysis of enterolactone. Hydrolysis at pH 6 proved to be detrimental to hydrolysis of phytoestrogen conjugates, especially those in plasma. Other enzyme preparations from different sources, such as beta-glucuronidase from Escherichia coli, were found to contain lower amounts of contaminating phytoestrogens and showed increased enzyme activity for isoflavones, but lower activity for lignans, when used with other sulfatase enzymes. In addition, this involved complicating the analytical procedure through using mixtures of enzymes. Therefore, the use of beta-glucuronidase from H. pomatia combined with an enzyme "blank" to correct for phytoestrogen contamination was shown to be a suitable method for hydrolysis of phytoestrogens.  相似文献   

15.
Synthetic glycoproteins can be prepared by reductive amination of protein and reducing disaccharide in the presence of sodium cyanoborohydride. The reaction proceeds readily in aqueous solutions over a broad pH range to give high degrees of substitution. The degree of substitution can be determined by amino acid analysis, as the secondary amine linkage formed by reductive amination in stable to acid-catalyzed protein hydrolysis conditions. In order to demonstrate that coupling occurs to lysine residues, synthetic α-N-1-(1-deoxyglucitol)-lysine and ?-N-1-(1-deoxyglucitol)-lysine were prepared and compared with bovine serum albumin conjugates of maltose, cellobiose, lactose, and melibiose by amino acid analysis after acid hydrolysis. These studies demonstrate that the expected secondary amine linkages are formed with the ?-amino groups of lysine.  相似文献   

16.
Acyl glucuronides formed from carboxylic acids can undergo hydrolysis, acyl migration, and covalent binding to proteins. In buffers at physiological pH, the degradation of acylglucuronide of a chiral NSAID, carprofen, consisted mainly of acyl migration. Acidic pH reduced hydrolysis and acyl migration, thus stabilizing the carprofen acyl glucuronides. Addition of human serum albumin (HSA) led to an increased hydrolysis of the conjugates of both enantiomers. This protein protected R-carprofen glucuronide from migration and therefore improved its overall stability. Hydrolysis was stereoselective in favor of the S conjugate. The protein domains and the amino acid residues likely to be responsible for the hydrolytic activity of HSA were deduced from the results of various investigations: competition with probes specific of binding sites, effects of pH and of chemical modifications of albumin. Dansylsarcosine (DS), a specific ligand of site II of HSA, impaired the hydrolysis, whereas dansylamide (DNSA) and digoxin, which are specific ligands of sites I and III, respectively, had no effect. The extent of hydrolysis by HSA strongly increased with pH, indicating the participation of basic amino acids in this process. The results obtained with chemically modified HSA suggest the major involvement of Tyr and Lys residues in the hydrolysis of glucuronide of S-carprofen, and of other Lys residues for that of its diastereoisomer.  相似文献   

17.
目的:化学全合成聚苹果酸(poly(β-malic acid),PMLA),将其作为高分子药物载体,制备聚苹果酸-羟喜树碱前药(PMLA-HCPT)。研究其体外释药特点和体外细胞毒性。方法:以L-天冬氨酸为原料,通过化学方法全合成PMLA,通过酰胺键键合羟基喜树碱(HCPT)。通过红外光谱、核磁共振光谱表征该前药的结构,利用体外动态透析的方法模拟体外释药特点,用高效液相色谱法测定不同pH值聚合物药物中前喜树碱的释药特性。采用人卵巢癌HO-8910细胞系研究该前药的体外毒性。结果:①经核磁共振表征PMLA-HCPT前药合成完成。②在pH 5.6、pH 6.8及pH 7.4的PBS缓冲体系16 h中,羟喜树碱药物累积释放率分别为76.8%,47.2%和18.1%,证实PMLA-HCPT中羟喜树碱的释放具有pH依赖性。③细胞实验证实PMLA-HCPT的细胞毒性和游离的HCPT相比没有降低。结论:PMLA是一种良好的药物载体材料,PMLA-HCPT有望成为具有pH敏感性的聚合物前药。  相似文献   

18.
N-cis-Aconityl and N-maleyl derivatives of daunomycin prepared from the respective anhydrides were conjugated to Affi-Gel 701 (aminoethyl polyacrylamide beads) and to poly(D-lysine). The cis-aconityl linkage between the drug and Affi-Gel 701 is pH-sensitive with a hydrolysis half-life of less than 3 h at pH 4 and more than 96 h at pH 6 or higher. Thin-layer chromatography and cytotoxic tests in cultured cells indicate that the product of hydrolysis is unaltered daunomycin. These Affi-Gel conjugates present for 3 days in the culture medium of WEHI-5 cells at neutral pH have little or no growth inhibitory effect. N-cis-aconityl daunomycin-poly(D-lysine) conjugates, however, added to WEHI-5 cells under comparable conditions cause a 90% inhibition of cell growth. In contrast, comparable addition of N-maleyl daunomycin-poly(D-lysine) conjugates is not inhibitory. We conclude that unlike the Affi-Gel conjugate, N-cis-aconityl daunomycin-poly(D-lysine) enters cells and reaches the lysosomal compartment, and that the cis-aconityl spacer releases daunomycin from poly(D-lysine) in the acidic milieu of lysosomes due to the participation of a free cis-carboxylic group. This releasing mechanism should be applicable to other drug-macromolecular conjugates.  相似文献   

19.
Polymer conjugates of anticancer drugs have shown high potential for assisting in cancer treatments. The pH-labile spacers allow site-specific triggered release of the drugs. We synthesized and characterized model drug conjugates with hydrazide bond-containing poly[N-(2-hydroxypropyl)methacrylamide] differing in the chemical surrounding of the hydrazone bond-containing spacer to find structure–drug release rate relationships. The conjugate selected for further studies shows negligible drug release in a pH 7.4 buffer but released 50% of the ellipticinium drug within 24 h in a pH 5.0 phosphate saline buffer. The ellipticinium drug retained the antiproliferative activity of the ellipticine.  相似文献   

20.
It is demonstrated that mixtures of ditetradecyl- phosphatidylcholine or didodecyl-phoshatidylcholine and dihexyl- phosphatidylcholine in water form lyotropic liquid crystalline phases under similar conditions as previously reported for bicelles consisting of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl- phosphatidylcholine (DHPC). The carboxy-ester bonds present in DMPC and DHPC are replaced by ether linkages in their alkyl analogs, which prevents acid- or base-catalyzed hydrolysis of these compounds. 15N-1H dipolar couplings measured for ubiquitin over the 2.3–10.4pH range indicate that this protein retains a backbone conformation which is very similar to its structure at pH 6.5 over this entire range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号