首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The C4 cereal Sorghum bicolor was grown under either ambient (350 μmol mol?1) or elevated (700 μmol mol?1) [CO2] in either the presence or absence of the C3 obligate root hemi-parasites Striga hermonthica or S. asiatica. Both uninfected and infected sorghum plants were taller and had greater biomass, photosynthetic rates, water-use efficiencies and leaf areas under elevated compared with ambient [CO2]. There was no evidence of any downregula-tion of photosynthesis in sorghum grown at elevated [CO2]. Biomass of infected sorghum was lower under both ambient and elevated [CO2], and although infected plants were larger under elevated [CO2] the relative impact of infection on host biomass was either the same (S. asiatica) or only slightly less (S. hermonthica) than under ambient [CO2]. In contrast, biomass of S. hermonthica and S. asiatica per host was lower under elevated than ambient [CO2], although rates of photosynthesis were higher at elevated [CO2] and parasite stomatal conductance was not responsive to [CO2]. Parasites emerged above-ground and flowered earlier under ambient compared with elevated [CO2]. It appears that the mechanism(s) by which the parasites affect host growth is (are) relatively insensitive to increased atmospheric [CO2], although the parasites themselves were adversely affected by growth at elevated [CO2].  相似文献   

2.
For medical and biotechnological reasons, it is important to study mammalian cells, animals, bacteria and plants exposed to simulated and real microgravity. It is necessary to detect the cellular changes that cause the medical problems often observed in astronauts, cosmonauts or animals returning from prolonged space missions. In order for in vitro tissue engineering under microgravity conditions to succeed, the features of the cell that change need to be known. In this article, we summarize current knowledge about the effects of microgravity on the proteome in different cell types. Many studies suggest that the effects of microgravity on major cell functions depend on the responding cell type. Here, we discuss and speculate how and why the proteome responds to microgravity, focusing on proteomic discoveries and their future potential.  相似文献   

3.
The plant mitochondrial respiratory system changes in its activity in response to light. This response has been thought to be important for ensuring cooperative function with the photosynthetic system. A recent study addressing light responses of the respiratory chain in Arabidopsis thaliana provided further insight into the role of mitochondria in illuminated leaves. Notably, the nonphosphorylating alternative oxidase is rapidly induced when plants are exposed to the high light stress, and appears to play a key role in keeping cellular redox balance.Key words: alternative oxidase, Arabidopsis thaliana, light acclimation, mitochondria, respiratory chain, organellar crosstalk  相似文献   

4.
We analyzed the survival rate of the immature stages of Trichogramma species and lines that differed in their mode of reproduction. Specifically, we compared the mortality of arrhenotokous (W(-)), irrevertable thelytokous (W(-)), and Wolbachia-associated thelytokous (W(+)) forms. The embryonic mortality of the W(+) strains was significantly higher than that of the W(-) lines. The embryonic mortality was negligible for the arrhenotokous Trichogramma evanescens and the thelytokous Trichogramma cacoeciae, which is not infected with Wolbachia. Only 30% of the eggs of the Wolbachia-infected strains developed to adults, while the emergence rate of the Wolbachia-free strains was more than 78%, irrespective of the origin of the strains. More than 78% of the overall mortality in W(+) strains happened during the early stages of development. About 35% of embryos of W(+) strains remain in the mitotic stage even 48 h after oviposition. Most embryos of W(-) strains had already developed to cellular blastoderm after 6 h, regardless of strains. The mortality of immature stages in W(+) strains was mainly caused by the failure of the mitotic divisions.  相似文献   

5.
Nitrogen‐fixing plant species growing in elevated atmospheric carbon dioxide concentration ([CO2]) should be able to maintain a high nutrient supply and thus grow better than other species. This could in turn engender changes in internal storage of nitrogen (N) and remobilisation during periods of growth. In order to investigate this one‐year‐old‐seedlings of Alnus glutinosa (L.) Gaertn and Pinus sylvestris (L.) were exposed to ambient [CO2] (350 µ mol mol ? 1) and elevated [CO2] (700 µ mol mol ? 1) in open top chambers (OTCs). This constituted a main comparison between a nitrogen‐fixing tree and a nonfixer, but also between an evergreen and a deciduous species. The trees were supplied with a full nutrient solution and in July 1994, the trees were given a pulse of 15N‐labelled fertiliser. The allocation of labelled N to different tissues (root, leaves, shoots) was followed from September 1994 to June 1995. While N allocation in P. sylvestris (Scots pine) showed no response to elevated [CO2], A. glutinosa (common alder) responded in several ways. During the main nutrient uptake period of June–August, trees grown in elevated [CO2] had a higher percentage of N derived from labelled fertiliser than trees grown in ambient [CO2]. Remobilisation of labelled N for spring growth was significantly higher in A. glutinosa grown in elevated [CO2] (9.09% contribution in ambient vs. 29.93% in elevated [CO2] leaves). Exposure to elevated [CO2] increased N allocation to shoots in the winter of 1994–1995 (12.66 mg in ambient vs. 43.42 mg in elevated 1993 shoots; 4.81 mg in ambient vs. 40.00 mg in elevated 1994 shoots). Subsequently significantly more labelled N was found in new leaves in April 1995. These significant increases in movement of labelled N between tissues could not be explained by associated increases in tissue biomass, and there was a significant shift in C‐biomass allocation away from the leaves towards the shoots (all above‐ground material except leaves) in A. glutinosa. This experiment provides the first evidence that not only are shifts in C allocation affected by elevated [CO2], but also internal N resource utilisation in an N2‐fixing tree.  相似文献   

6.
BackgroundOnchocerciasis (river-blindness) in Africa is targeted for elimination through mass drug administration (MDA) with ivermectin. Onchocerciasis may cause various types of skin and eye disease. Predicting the impact of MDA on onchocercal morbidity is useful for future policy development. Here, we introduce a new disease module within the established ONCHOSIM model to predict trends over time in prevalence of onchocercal morbidity.MethodsWe developed novel generic model concepts for development of symptoms due to cumulative exposure to dead microfilariae, accommodating both reversible (acute) and irreversible (chronic) symptoms. The model was calibrated to reproduce pre-control age patterns and associations between prevalences of infection, eye disease, and various types of skin disease as observed in a large set of population-based studies. We then used the new disease module to predict the impact of MDA on morbidity prevalence over a 30-year time frame for various scenarios.ResultsONCHOSIM reproduced observed age-patterns in disease and community-level associations between infection and disease reasonably well. For highly endemic settings with 30 years of annual MDA at 60% coverage, the model predicted a 70% to 89% reduction in prevalence of chronic morbidity. This relative decline was similar with higher MDA coverage and only somewhat higher for settings with lower pre-control endemicity. The decline in prevalence was lowest for mild depigmentation and visual impairment. The prevalence of acute clinical manifestations (severe itch, reactive skin disease) declined by 95% to 100% after 30 years of annual MDA, regardless of pre-control endemicity.ConclusionWe present generic model concepts for predicting trends in acute and chronic symptoms due to history of exposure to parasitic worm infections, and apply this to onchocerciasis. Our predictions suggest that onchocercal morbidity, in particular chronic manifestations, will remain a public health concern in many epidemiological settings in Africa, even after 30 years of MDA.  相似文献   

7.
1. The photosynthetic response to elevated CO2 and nutrient stress was investigated in Agrostis capillaris, Lolium perenne and Trifolium repens grown in an open-top chamber facility for 2 years under two nutrient regimes. Acclimation was evaluated by measuring the response of light-saturated photosynthesis to changes in the substomatal CO2 concentration.
2. Growth at elevated CO2 resulted in reductions in apparent Rubisco activity in vivo in all three species, which were associated with reductions of total leaf nitrogen content on a unit area basis for A. capillaris and L. perenne . Despite this acclimation, photosynthesis was significantly higher at elevated CO2 for T. repens and A. capillaris , the latter exhibiting the greatest increase of carbon uptake at the lowest nutrient supply.
3. The photosynthetic nitrogen-use efficiency (the rate of carbon assimilation per unit leaf nitrogen) increased at elevated CO2, not purely owing to higher values of photosynthesis at elevated CO2, but also as a result of lower leaf nitrogen contents.
4. Contrary to most previous studies, this investigation indicates that elevated CO2 can stimulate photosynthesis under a severely limited nutrient supply. Changes in photosynthetic nitrogen-use efficiency may be a critical determinant of competition within low nutrient ecosystems and low input agricultural systems.  相似文献   

8.
9.
Abstract. The effect of a mistletoe, Phthirusa maritima , on the water, nitrogen and carbon balance of two mangrove host species, Conocarpus erectus and Coccoloba uvifera , was studied. Several daily cycles of water potential and its components (pressure-volume curves); leaf nitrogen content (Kjeldahl method); leaf conductance, transpiration rates and carbon assimilation (portable gas exchange system) were measured on mistletoe, infested and uninfested plants in the Caribbean coast of Venezuela. The mistletoe on both host species showed higher transpiration rates and lower CO2 assimilation rates, and therefore lower water use efficiencies. With respect to infested and uninfested plants, C. erectus did not show large differences in the parameters measured with the exception of assimilation rates which were significantly lower in the infested plants. On the other hand, C. uvifera did show differences in all parameters and, therefore, was affected to a greater degree by the mistletoe. The behaviour of mistletoeinfested and uninfested plants, with respect to habitats with different degrees of water stress and with respect to the salinity gradient in which these mangroves grow, is discussed.  相似文献   

10.
11.
During dehydration, numerous metabolites accumulate in vegetative desiccation-tolerant tissues. This is thought to be important in mechanically stabilizing the cells and membranes in the desiccated state. Non-aqueous fractionation of desiccated leaf tissues of the resurrection grass Eragrostis nindensis (Ficalho and Hiern) provided an insight into the subcellular localization of the metabolites (because of the assumptions necessary in the calculations the data must be treated with some caution). During dehydration of the desiccant-tolerant leaves, abundant small vacuoles are formed in the bundle sheath cells, while cell wall folding occurs in the thin-walled mesophyll and epidermal cells, leading to a considerable reduction in the cross-sectional area of these cells. During dehydration, proline, protein, and sucrose accumulate in similar proportions in the small vacuoles in the bundle sheath cells. In the mesophyll cells high amounts of sucrose accumulate in the cytoplasm, with proline and proteins being present in both the cytoplasm and the large central vacuole. In addition to the replacement of water by compatible solutes, high permeability of membranes to water may be critical to reduce the mechanical strain associated with the influx of water on rehydration. The immunolocalization of a possible TIP 3;1 to the small vacuoles in the bundle sheath cells may be important in both increased water permeability as well as in the mobilization of solutes from the small vacuoles on rehydration. This is the first report of a possible TIP 3;1 in vegetative tissues (previously only reported in orthodox seeds).  相似文献   

12.
HIV-1 envelope glycoprotein is reported to interact with α4β7, an integrin mediating the homing of lymphocytes to gut-associated lymphoid tissue, but the significance of α4β7 in HIV-1 infection remains controversial. Here, using HIV-1 strain Ba L, the gp120 of which was previously shown to be capable of interacting with α4β7, we demonstrated that α4β7 can mediate the binding of whole HIV-1 virions to α4β7-expressing transfectants. We further constructed a cell line stably expressing α4β7 and confirmed the α4β7-mediated HIV-1 binding. In primary lymphocytes with activated α4β7 expression, we also observed significant virus binding which can be inhibited by an anti-α4β7 antibody. Moreover, we investigated the impact of antagonizing α4β7 on HIV-1 infection of primary CD4+ T cells. In α4β7-activated CD4+ T cells, both anti-α4β7 antibodies and introduction of shorthairpin RNAs specifically targeting α4β7 resulted in a decreased HIV-1 infection. Our findings indicate that α4β7 may serve as an attachment factor at least for some HIV-1 strains. The established approach provides a promising means for the investigation of other viral strains to understand the potential roles of α4β7 in HIV-1 infection.  相似文献   

13.
This article revisits recent debates about the responsibilities of public scholarship. The piece argues that writing in a range of fields has engaged with issues of racism, in particular as racism has been manifested in the ‘war on terror’, but that this discussion has been muted within the sub-field of race and ethnic studies. There is a discussion of the impact of pressures to demonstrate the ‘usefulness’ of research to a wider public and the limits that this can place on the formulation of research. This argument is expanded through consideration of the author's experience of researching and lobbying with community and campaigning groups. The piece goes on to consider the implications of the marketization of higher education for critical scholarship and concludes that there is value in a more ‘private’ sociology that may not be easily accommodated in the marketized university.  相似文献   

14.
15.
Climate change factors such as elevated carbon dioxide (CO2) and temperature typically affect carbon (C) and nitrogen (N) dynamics of crop plants and the performance of insect herbivores. Insect‐resistant transgenic plants invest some nutrients to the production of specific toxic proteins [i.e. endotoxins from Bacillus thuringiensis (Bt)], which could alter the C–N balance of these plants, especially under changed abiotic conditions. Aphids are nonsusceptible to Lepidoptera‐targeted Bt Cry1Ac toxin and they typically show response to abiotic conditions, and here we sought to discover whether they might perform differently on compositionally changed Bt oilseed rape. Bt oilseed rape had increased N content in the leaves coupled with reduced total C compared with its nontransgenic counterpart, but in general the C : N responses of both plant types to elevated CO2 and temperature were similar. Elevated CO2 decreased N content and increased C : N ratio of both plant types. Elevated temperature increased C and N contents, total chlorophyll and carotenoid concentrations under ambient CO2, but decreased these under elevated CO2. In addition, soluble sugars were increased and starch decreased by elevated temperature under ambient but not under elevated CO2, whereas photosynthesis was decreased in plants grown under elevated temperature in both CO2 levels. Myzus persicae, a generalist aphid species, responded directly to elevated temperature with reduced developmental time and decreased adult and progeny weights, whereas the development of the Brassica specialist Brevicoryne brassicae was less affected. Feeding by M. persicae resulted in an increase in the N content of oilseed rape leaves under ambient CO2, indicating the potential of herbivore feeding itself to cause allocation changes. The aphids performed equally well on both plant types despite the differences between C–N ratios of Bt and non‐Bt oilseed rape, revealing the absence of plant composition‐related effects on these pests under elevated CO2, elevated temperature or combined elevated CO2 and temperature conditions.  相似文献   

16.
Most genomes are much more complex than required for the minimum chemistry of life. Evolution has selected sophistication more than life itself. Could this also apply to bioenergetics? We first examine mechanisms through which bioenergetics could deliver sophistication. We illustrate possible benefits of the turbo-charging of catabolic pathways, of loose coupling, low-gear catabolism, automatic transmission in energy coupling, and of homeostasis. Mechanisms for such phenomena may reside at the level of individual proton pumps, or consist of rerouting of electrons over parallel pathways. The mechanisms may be confined to preexisting components, or involve the plasticity of gene expression that is so characteristic of most living organisms. These possible benefits lead us to the conjecture that also bioenergetics has evolved more for sophistication than for necessity. We next discuss a hitherto unresolved enigma, i.e. that bioenergetics does not seem to be critical for the physiological state. To decide on how critical bioenergetics is, we quantified the control exerted by catabolism on important physiological functions such as growth rate and growth yield. We also determined whether a growth inhibition mostly affected bioenergetics (catabolism) or anabolism; if ATP increases with growth rate, then growth should be considered energy (catabolism) limited. The experimental results for Escherichia coli pinpoint the enigma: its energy metabolism (catabolism) is not critical for growth rate. These results might suggest that because it has no direct control over cell function, bioenergetics is unimportant. Paradoxically however, in biology, highly important mechanisms tend to have little control on cell function, precisely because of that importance. Sophistication in terms of homeostatic mechanisms has evolved to guarantee robustness of the most important functions: The most important mechanisms are redundant in biology. Bioenergetics may be an excellent example of this paradox, in line with the above conjecture. It may be highly important and sophisticated. We then discuss work that has begun to focus on the sophistication of bioenergetics. Homeostasis of the energetics of DNA structure in E. coli is extensive. It relies both on preexisting components and on responsive gene expression. The vastly parallel electron-transfer network of Paracoccus denitrificans engages in sophisticated dynamic and hierarchical regulation. The growth yield of the organism can depend on which terminal oxidases are active. Effective proton translocation may vary due to rerouting of electrons. We conclude that much sophistication of bioenergetics will be discovered in this era of functional genomics.  相似文献   

17.
This article is part of a Special Issue “Estradiol and cognition”.Estrogens impact the organization and activation of the mammalian brain in both sexes, with sex-specific critical windows. Throughout the female lifespan estrogens activate brain substrates previously organized by estrogens, and estrogens can induce non-transient brain and behavior changes into adulthood. Therefore, from early life through the transition to reproductive senescence and beyond, estrogens are potent modulators of the brain and behavior. Organizational, reorganizational, and activational hormone events likely impact the trajectory of brain profiles during aging. A “brain profile,” or quantitative brain measurement for research purposes, is typically a snapshot in time, but in life a brain profile is anything but static — it is in flux, variable, and dynamic. Akin to this, the only thing continuous and consistent about hormone exposures across a female's lifespan is that they are noncontinuous and inconsistent, building and rebuilding on past exposures to create a present brain and behavioral landscape. Thus, hormone variation is especially rich in females, and is likely the destiny for maximal responsiveness in the female brain. The magnitude and direction of estrogenic effects on the brain and its functions depend on a myriad of factors; a “Goldilocks” phenomenon exists for estrogens, whereby if the timing, dose, and regimen for an individual are just right, markedly efficacious effects present. Data indicate that exogenously-administered estrogens can bestow beneficial cognitive effects in some circumstances, especially when initiated in a window of opportunity such as the menopause transition. Could it be that the age-related reduction in efficacy of estrogens reflects the closure of a late-in-life critical window occurring around the menopause transition? Information from classic and contemporary works studying organizational/activational estrogen actions, in combination with acknowledging the tendency for maximal responsiveness to cyclicity, will elucidate ways to extend sensitivity and efficacy into post-menopause.  相似文献   

18.
The reduction of ethanolic solutions of niobium pentachloride with zinc, followed by treatment with aqueous acids serves as a versatile entry into the aqueous solution chemistry of niobium. From the zinc-reduced solution, the major intermediate, Nb42-O)22-OC2H5)4Cl4(OC2H5)4(HOC2H5)4, was isolated and the crystal structure determined by X-ray crystallography. The complex crystallizes in the orthorhombic space group Pccn, with Z=4, a=21.0105(9), b=11.0387(5), c=19.1389(8), V=4438.9(3) Å3, Mr=1090.19,R1=0.0327 and wR2=0.0876. The structure revealed a centrosymmetric tetrameric Nb(IV) complex, consisting of a pair of edge-sharing bi-octahedral Nb22-OC2H5)4Cl2(OC2H5)2(HOC2H5)2 units that are joined by two axial oxo ligands. The Nb-Nb distance of 2.7458(3) Å is consistent with a single metal-metal bond.  相似文献   

19.
We investigated how Sasa kurilensis ramet longevity differs under three light conditions. Ramet longevity is an important factor affecting the abundance of ramet populations and their biomass. The objectives of this study were to clarify: (1) whether ramet longevity varies spatially along a gradient of light conditions; (2) whether physiological functions, including water transport in culms, change with ontogenesis; (3) whether ramet longevity is associated with the most effective turnover for gaining a carbon profit within a ramet following a cost-benefit model or is affected by other factors such as death caused by a decline in physiological function. We analyzed S. kurilensis ramet longevity, hydraulic resistance, photosynthetic rate, and carbon content. We then estimated the ramet carbon budget. The longevity of S. kurilensis ramets was 2.8–4.5 years in Beneath-patch plots, 5.8–8.7 years in Edge-patch plots, and 1.6–2.2 years in Open-patch plots. Although leaf photosynthetic activity was stable, the instantaneous photosynthetic rate decreased during clear days in the open area. This may have been due to increased ramet hydraulic resistance. The rotation period of the most efficient carbon budget quantified by ecophysiological measurements was consistent with ramet longevity in Open-patch (2 years) and Edge-patch (5 years) sites. Meanwhile, the longevity of ramets grown under canopies was inconsistent with the cost-benefit model rules for a carbon budget because the carbon gain was low throughout the ramet life span.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号