首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two classes of enzymes, poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferases, catalyze covalent attachment of multiple or single residues, respectively, of the ADP-ribose moiety of NAD+ to various proteins. In order to find good inhibitors of poly(ADP-ribose) synthetase free of side actions and applicable to in vivo studies, we made a large scale survey using an in vitro assay system, and found many potent inhibitors. The four strongest were 4-amino-1,8-naphthalimide, 6(5H)- and 2-nitro-6(5H)-phenanthridinones, and 1,5-dihydroxyisoquinoline. Their 50% inhibitory concentrations, 0.18-0.39 microM, were about two orders of magnitude lower than that of 3-aminobenzamide that is currently most popularly used. A common structural feature among all potent inhibitors, including 1-hydroxyisoquinoline, chlorthenoxazin, 3-hydroxybenzamide, and 4-hydroxyquinazoline, in addition to the four mentioned above, was the presence of a carbonyl group built in a polyaromatic heterocyclic skeleton or a carbamoyl group attached to an aromatic ring. Most of the inhibitors exhibited mixed-type inhibition with respect to NAD+. Comparative studies of the effects on poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase from hen heterophils revealed high specificity of most of the potent inhibitors for poly(ADP-ribose) synthetase. On the other hand, unsaturated long-chain fatty acids inhibited both enzymes, and saturated long-chain fatty acids and vitamin K1 acted selectively on mono(ADP-ribosyl)transferase. The finding of many inhibitors of ADP-ribosyltransferases, especially poly(ADP-ribose) synthetase, supports the view that ADP-ribosylation of proteins may be regulated by a variety of metabolites or structural constituents in the cell.  相似文献   

2.
A homogeneous preparation of an arginine-specific mono(ADP-ribosyl)transferase from turkey erythrocytes effectively utilized 2'-deoxy-NAD+ for the 2'-deoxy(ADP-ribose) modification of arginine methyl ester with an apparent Km of 27.2 microM and a Vmax of 36.4 mumol min-1 (mg of protein)-1. The adduct formed was also used as a substrate by an avian erythrocyte arginine(ADP-ribose)-specific hydrolase that generated free 2'-deoxy(ADP-ribose). In contrast, 2'-deoxy-NAD+ was not a substrate in the initiation or elongation reaction catalyzed by highly purified poly(ADP-ribose) polymerase from calf thymus. However, 2'-deoxy-NAD+ was a potent noncompetitive inhibitor of NAD+ in the elongation reaction catalyzed by the polymerase, with an apparent Ki of 32 microM. These results indicate that 2'-deoxy-NAD+ may be utilized to specifically identify protein acceptors for endogenous mono(ADP-ribosyl)transferases in complex biological systems that may contain a high activity of poly(ADP-ribose) polymerase, i.e., cell nuclei preparations.  相似文献   

3.
ADP-ribosylation reaction, that is the transfer of the ADP-ribose moiety of NAD+ to acceptor protein, is catalyzed by two classes of ADP-ribosyltransferases,i.e., poly(ADP-ribose) synthetase and mono (ADP-ribosyl)transferases. These two types differ not only in the number of transferring ADP-ribose units but also in the acceptor amino acid(s) and protein. Their in hibitors, particularly those of poly(ADP-ribose) synthetase, have been successfully employed in studies on biological functions of the enzymes and other related fields of research. Recently, we found many potent and specific inhibitors of poly-(ADP-ribose) synthetase, and broadened their chemical as well as biochemical variety. More recently, we found several potent inhibitors of arginine-specific mono(ADP-ribosyl)transferases and activators of poly(ADP-ribose) synthetase.  相似文献   

4.
5.
Calf thymus histones (individually isolated or mixtures) and high mobility group proteins were ADP-ribosylated in vitro using [32P]NAD+ and immobilized purified poly(ADP-ribose) polymerase. The modified histones were then subjected to V8 protease or alpha-chymotrypsin digestion and the resulting peptides were separated by electrophoresis on acetic acid-urea-Triton gels. It was found that in vitro ADP-ribosylated histones were much more resistant to proteases than unmodified histones. A similar approach was applied to histones modified by the endogenous poly(ADP-ribose) polymerase in permeabilized NS-1 mouse myeloma cells in culture. In this case, the proteases could not discriminate between modified and unmodified histones and putative mono(ADP-ribosyl)ated peptides appeared in a digestion frame corresponding to that of bulk peptides. These differences are most probably due to the specificity or number of ADP-ribose groups added to the histones by the endogenous or exogenous poly(ADP-ribose) polymerase. Thus, depending on the size of poly(ADP-ribose) attached to nuclear proteins, these modified proteins might display different degrees of resistance to proteolysis.  相似文献   

6.
While studying the inhibition of telomerase activity in Chinese hamster V79 cells using polymerase chain reaction (PCR) based telomeric repeat amplification protocol (TRAP) assay, we had earlier observed that 7-deaza deoxy guanosine triphosphate (7-deaza dGTP) and oligonucleotide (TTAGGG)4 inhibited telomerase activity in vitro. In the present study, we report inhibition of telomerase activity by modified base 7-deaza deoxy adenosine triphosphate (7-deaza dATP) and phosphorothioate TTAGGG (PS-TTAGGG). Both the compounds inhibited telomerase activity in a concentration dependent manner; 8.5 microM of 7-deaza dATP and 0.1 microM of PS-TTAGGG being the concentration for 50% of the maximum inhibition. This observation supports our earlier hypothesis that incorporation of a modified nucleotide into telomere possibly interferes with the recognition of the telomerase and TTAGGG interferes with the RNA component of telomerase. We have further shown that treatment of cells with nicotinamide (NA) and benzamide (BA), well known inhibitors of poly (ADP-ribose) polymerase, reduced telomerase activity. We speculate that modification of the telomeric binding proteins or other components by poly (ADP-ribosyl)ation may be involved in such inhibition.  相似文献   

7.
Poly(ADP-ribose) polymerase specifically recognizes DNA strand breaks by its DNA-binding domain. DNA binding activates the enzyme to catalyze the formation of poly(ADP-ribose) utilizing NAD as substrate. By a molecular genetic approach we set out to inhibit this enzyme activity in a highly specific manner, thus avoiding the inherent side effects of NAD analogs which have been used extensively as enzyme inhibitors. cDNA sequences coding for the human poly(ADP-ribose) polymerase DNA-binding domain were subcloned into eucaryotic expression plasmids and transiently transfected into monkey cells. Cells were fixed with ethanol followed by incubation with NAD. Indirect double immunofluorescence to detect both overexpressed protein and poly(ADP-ribose) in situ revealed that overexpression of the DNA-binding domain greatly inhibited poly(ADP-ribosyl)ation catalyzed by the resident enzyme during NAD postincubation. The same inhibition was observed when transfected cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine to induce DNA strand breaks in vivo and subjected to trichloroacetic acid/ethanol fixation and subsequent immunofluorescence analysis, a novel method we developed for the in situ detection of polymer synthesis in intact cells. This molecular genetic approach may prove to be a selective and efficient tool to investigate possible functions of poly(ADP-ribosyl)ation in living cells.  相似文献   

8.
The enzyme poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of glycosidic bonds of ADP-ribose polymers, producing monomeric ADP-ribose units. Thus, in conjunction with poly(ADP-ribose) polymerase (PARP), PARG activity regulates the extent of in vivo poly(ADP-ribosyl)ation. Small molecule inhibitors of PARP and PARG have shown considerable promise in cellular models of ischemia-reperfusion injury and oxidative neuronal cell death. However, currently available PARG inhibitors are not ideal due to cell permeability, size, and/or toxicity concerns; therefore, new small molecule inhibitors of this important enzyme are sorely needed. Existing methodologies for in vitro assessment of PARG enzymatic activity do not lend themselves to high-throughput screening applications, as they typically use a radiolabeled substrate and determine product quantities through TLC analysis. This article describes a method whereby the ADP-ribose product of the PARG-catalyzed reaction is converted into a fluorescent dye. This highly sensitive and reproducible method is demonstrated by identifying two known PARG inhibitors in a 384-well plate assay and by subsequently determining IC(50) values for these compounds. Thus, this high-throughput, nonradioactive PARG assay should find widespread use in experiments directed toward identification of novel PARG inhibitors.  相似文献   

9.
NAD+ and its derivatives NADH, NADP+, and NADPH are essential cofactors in redox reactions and electron transport pathways. NAD serves also as substrate for an extensive series of regulatory enzymes including cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases which are O-acetyl-ADP-ribosyltransferases. As a result of the numerous and diverse enzymes that utilize NAD as well as depend on its synthesis and concentration, significant interest has developed in its role in a variety of physiologic and pathologic processes, and therapeutic initiatives have focused both on augmenting its levels as well as inhibiting some of its pathways. In this article, we examine the biosynthesis of NAD, metabolic processes in which it is involved, and its role in aging, cancer, and other age-associated comorbidities including neurodegenerative, cardiovascular, and metabolic disorders. Therapeutic interventions to augment and/or inhibit these processes are also discussed.Impact statementNAD is a central metabolite connecting energy balance and organismal growth with genomic integrity and function. It is involved in the development of malignancy and has a regulatory role in the aging process. These processes are mediated by a diverse series of enzymes whose common focus is either NAD’s biosynthesis or its utilization as a redox cofactor or enzyme substrate. These enzymes include dehydrogenases, cyclic ADP-ribose hydrolases, mono(ADP-ribosyl)transferases, poly(ADP-ribose) polymerases, and sirtuin deacetylases. This article describes the manifold pathways that comprise NAD metabolism and promotes an increased awareness of how perturbations in these systems may be important in disease prevention and/or progression.  相似文献   

10.
The activity of purified bovine thymus terminal deoxynucleotidyl transferase was markedly inhibited when the enzyme was incubated in a poly(ADP-ribose)-synthesizing system containing purified bovine thymus poly(ADP-ribose) polymerase, NAD+, Mg2+ and DNA. All of these four components were indispensable for the inhibition. The inhibitors of poly(ADP-ribose) polymerase counteracted the observed inhibition of the transferase. Under a Mg2+-depleted and acceptor-dependent ADP-ribosylating reaction condition [Tanaka, Y., Hashida, T., Yoshihara, H. and Yoshihara, K. (1979) J. Biol. Chem. 254, 12433-12438], the addition of terminal transferase to the reaction mixture stimulated the enzyme reaction in a dose-dependent manner, suggesting that the transferase is functioning as an acceptor for ADP-ribose. Electrophoretic analyses of the reaction products clearly indicated that the transferase molecule itself was oligo (ADP-ribosyl)ated. When the product was further incubated in the Mg2+-fortified reaction mixture, the activity of terminal transferase markedly decreased with increase in the apparent molecular size of the enzyme, indicating that an extensive elongation of poly(ADP-ribose) bound to the transferase is essential for the observed inhibition. Free poly(ADP-ribose) and the polymer bound to poly(ADP-ribose) polymerase were ineffective on the activity of the transferase. All of these results indicate that the observed inhibition of terminal transferase is caused by the poly(ADP-ribosyl)ation of the transferase itself.  相似文献   

11.
Circadian rhythms, which measure time on a scale of 24h, are generated by one of the most ubiquitous endogenous mechanisms, the circadian clock. SIRT1, a class III histone deacetylase, and PARP-1, a poly(ADP-ribose) polymerase, are two NAD(+)-dependent enzymes that have been shown to be involved in the regulation of the clock. Here we present evidence that the metabolite nicotinamide, an inhibitor of SIRT1, PARP-1 and mono(ADP-ribosyl) transferases, blocks the ability of dexamethasone to induce the acute response of the circadian clock gene, mper1, while it concomitantly reduces the levels of histone H3 trimethylation of lysine 4 (H3K4me3) in the mper1 promoter. Moreover, application of alternative inhibitors of SIRT1 and ADP-ribosylation did not lead to similar results. Therefore, inhibition of these enzymes does not seem to be the mode by which NAM exerts these effects. These results suggest the presence of a novel mechanism, not previously documented, by which NAM can alter gene expression levels via changes in the histone H3K4 trimethylation state.  相似文献   

12.
13.
To analyze a possible involvement of ADP-ribosylation reactions in 3T3-L1 pre-adipocyte differentiation. ADP-ribosyltransferase activities is permeabilized cells as well as endogenous amounts of protein-bound mono- and poly(ADP-ribose) residues were determined. Also, in vivo labeling with [3H]adenosine of ADP-ribose residues linked to high-mobility-group (HMG) proteins was performed. As an additional probe, the effects of ADP-ribosylation inhibitors and non-inhibitory analogs were studied. Basal and total poly(ADP-ribose) polymerase activities markedly increased prior to the appearance of the differentiation marker glycerol-3-phosphate dehydrogenase. Despite these apparent changes in activity, however, neither protein-bound poly(ADP-ribose) residue nor mono(ADP-ribosyl) groups in histones, nor the NAD content, changed significantly under these conditions. Furthermore, although HMG protein-associated [3H]ADP-ribose was reduced in differentiating [3H]adenosine-labeled cells, the data suggest altered precursor pool labeling rather than a specific decrease in ADP-ribosylated HMG proteins. Non-participation of ADP-ribosylation reactions in 3T3-L1 differentiation is further supported by experiments with inhibitors and non-inhibitory analogs. Benzamide at 0.3-3 mM per se without effect on differentiation, was able to induce specific gene expression when combined with insulin (10(-12)-10(-7) M). Similar effects were seen with benzoate as well as with nicotinamide, 3-aminobenzamide and their corresponding acids. The data indicate that benzamide and analogs have profound effects on chromatin functions that are not mediated by ADP-ribosylation reactions.  相似文献   

14.
Poly(ADP-ribose) and the response of cells to ionizing radiation   总被引:1,自引:0,他引:1  
The activity of poly(ADP-ribose) polymerase is stimulated by DNA damage resulting from treatment of cells with ionizing radiation, as well as with DNA-damaging chemicals. The elevated polymerase activity can be observed at doses lower than those necessary for measurable reduction in cellular NAD concentration (less than 20 Gy). Several nuclear proteins, including the polymerase itself, are poly(ADP-ribosylated) at elevated levels in irradiated Chinese hamster cells. The addition of inhibitors of poly(ADP-ribose) polymerase to irradiated cells has been found to sensitize the cells to the lethal effects of the radiation, to inhibit the repair of potentially lethal damage, and to delay DNA strand break rejoining. Because of the nonspecificity of the inhibitors, however, it is as yet unknown whether their effects are directly related to the inhibition of poly(ADP-ribose) polymerase, to interference with the poly(ADP-ribosylation) of one or more chromosomal proteins, or to effects unrelated to the poly(ADP-ribosylation) process. The data are consistent with the involvement of poly(ADP-ribose) in the repair of radiation damage, but the nature of this involvement remains to be elucidated.  相似文献   

15.
16.
Incubation of Ehrlich ascites tumor cells in their own ascites fluid induced a reversible metabolic adaptation to these "starvation" conditions which was associated with a fragmentation of DNA. Endogenous poly(ADP-ribose) residues also increased, reaching within 1-3 h values 6-10 times higher than in cells taken directly from the mouse peritoneum. The NAD content changed only slightly while dimethyl sulfate-induced accumulation of poly(ADP-ribose) (10-fold within 30 min) was associated with a rapid depletion of NAD (85% lost at 30 min). Nevertheless, turnover of poly(ADP-ribose) as measured by the decay rate of the polymer upon addition of benzamide was dramatically stimulated in both situations, reaching apparently identical half-lives (t 1/2 approximately equal to 1 min) in "starved" and in alkylated cells. However, since penetration of benzamide into the nucleus may be the rate-limiting factor in these studies, turnover of poly(ADP-ribose) in dimethyl sulfate-treated cells may still be much higher than that in "starved" cells. In cells treated with dimethyl sulfate, suppression of poly(ADP-ribose) synthesis by benzamide did not interfere with DNA fragmentation or with DNA resealing as determined by the nucleoid procedure. By contrast, starvation induced a type of DNA incision that was prevented by benzamide. It is proposed that starvation-induced scission of DNA occurs at specific ("regulatory?") sites requiring poly(ADP-ribose) formation to take place, while fragmentation of DNA at random as seen with alkylating agents is associated with, but not dependent on, increased poly(ADP-ribosyl)ation.  相似文献   

17.
We have studied the poly(ADP-ribosyl)ation of nuclear proteins in situ by examining the incorporation of [3H]NAD-derived ADP-ribose into polymers. We have devised a way to deliver [3H]NAD to cells growing in vitro, and we have determined the kinetics of uptake and incorporation into nuclear proteins using this delivery system. Incorporation into the histone fraction, known acceptors of poly(ADP-ribose), was examined and shown to be sensitive to the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide. Polyacrylamide gel electrophoresis of 3H-labeled proteins revealed radioactivity associated with known poly(ADP-ribose)-accepting proteins such as poly(ADP-ribose) polymerase and histones. These results were confirmed when we immunoreacted gel-separated proteins with anti-(ADP-ribose) generated in our laboratory.  相似文献   

18.
Rooster testis cells were separated by sedimentation at unit gravity and the in vivo levels of polymeric ADP-ribose were determined both in intact cells and isolated nuclei by fluorescence methods. Poly(ADP-ribose) polymerase activity was assayed after cell permeabilization or after isolation of nuclei. The turnover of ADP-ribosyl residues was determined in isolated nuclei using benzamide. The content of poly(ADP-ribose), the poly(ADP-ribose) polymerase activity, and the turnover of ADP-ribosyl residues, decreased during the differentiation of the germinal cell line, especially at the end of spermiogenesis. Treatment of cells with 1 mM dimethyl sulfate for 1 h resulted in a marked stimulation of poly(ADP-ribose) polymerase activity in meiotic and premeiotic cells and also in round and late spermatids. The enzymatic activity was not detected and could not be induced in mature spermatozoa. These cells, however, still contained polymeric ADP-ribose with a 2% of branched form.  相似文献   

19.
20.
Incubation of DNA polymerase alpha, DNA polymerase beta, terminal deoxynucleotidyl transferase, or DNA ligase II in a reconstituted poly(ADP-ribosyl)ating enzyme system markedly suppressed the activity of these enzymes. Components required for poly(ADP-ribose) synthesis including poly(ADP-ribose) polymerase, NAD+, DNA, and Mg2+ were all essential for the observed suppression. Purified poly(ADP-ribose) itself, however, was slightly inhibitory to all of these enzymes. Furthermore, the suppressed activities of DNA polymerase alpha, DNA polymerase beta, and terminal deoxynucleotidyl transferase were largely restored (3 to 4-fold stimulation was observed) by a mild alkaline treatment, a procedure known to hydrolyze alkaline-labile ester linkage between poly(ADP-ribose) and an acceptor protein. All of these results strongly suggest that the four nuclear enzymes were inhibited as a result of poly(ADP-ribosyl)ation of either the enzyme molecule itself or some regulatory proteins of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号