首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.  相似文献   

2.
The deactivation of visual pigments involved in phototransduction is critical for recovering sensitivity after exposure to light in rods and cones of the vertebrate retina. In rods, phosphorylation of rhodopsin by rhodopsin kinase (GRK1) and the subsequent binding of visual arrestin completely terminates phototransduction. Although signal termination in cones is predicted to occur via a similar mechanism as in rods, there may be differences due to the expression of related but distinct gene products. While rods only express GRK1, cones in some species express only GRK1 or GRK7 and others express both GRKs. In the mouse, cone opsin is phosphorylated by GRK1, but this has not been demonstrated in mammals that express GRK7 in cones. We compared cone opsin phosphorylation in intact retinas from the 13-lined ground squirrel (GS) and pig, cone- and rod-dominant mammals, respectively, which both express GRK7. M opsin phosphorylation increased during continuous exposure to light, then declined between 3 and 6 min. In contrast, rhodopsin phosphorylation continued to increase during this time period. In GS retina homogenates, anti-GS GRK7 antibody blocked M opsin phosphorylation by 73%. In pig retina homogenates, only 20% inhibition was observed, possibly due to phosphorylation by GRK1 released from rods during homogenization. Our results suggest that GRK7 phosphorylates M opsin in both of these mammals. Using an in vitro GTPgammaS binding assay, we also found that the ability of recombinant M opsin to activate G(t) was greatly reduced by phosphorylation. Therefore, phosphorylation may participate directly in the termination of phototransduction in cones by decreasing the activity of M opsin.  相似文献   

3.
Retinal rod and cone pigments consist of an apoprotein, opsin, covalently linked to a chromophore, 11-cis retinal. Here we demonstrate that the formation of the covalent bond between opsin and 11-cis retinal is reversible in darkness in amphibian red cones, but essentially irreversible in red rods. This dissociation, apparently a general property of cone pigments, results in a surprisingly large amount of free opsin--about 10% of total opsin--in dark-adapted red cones. We attribute this significant level of free opsin to the low concentration of intracellular free 11-cis retinal, estimated to be only a tiny fraction (approximately 0.1 %) of the pigment content in red cones. With its constitutive transducin-stimulating activity, the free cone opsin produces an approximately 2-fold desensitization in red cones, equivalent to that produced by a steady light causing 500 photoisomerizations s-1. Cone pigment dissociation therefore contributes to the sensitivity difference between rods and cones.  相似文献   

4.
Rods and cones contain closely related but distinct G protein-coupled receptors, opsins, which have diverged to meet the differing requirements of night and day vision. Here, we provide evidence for an exception to that rule. Results from immunohistochemistry, spectrophotometry, and single-cell RT-PCR demonstrate that, in the tiger salamander, the green rods and blue-sensitive cones contain the same opsin. In contrast, the two cells express distinct G protein transducin alpha subunits: rod alpha transducin in green rods and cone alpha transducin in blue-sensitive cones. The different transducins do not appear to markedly affect photon sensitivity or response kinetics in the green rod and blue-sensitive cone. This suggests that neither the cell topology or the transducin is sufficient to differentiate the rod and the cone response.  相似文献   

5.
Phototransduction in vertebrate rod and cone photoreceptor cells involves G protein-mediated light stimulation of cGMP hydrolysis. Enzymes of the cGMP hydrolysis cascades of rods and cones are products of different genes. Three different classes of cones in the human retina are maximally sensitive to either blue, green, or red light. Distinct opsin genes are expressed in each type of cone. The distribution of cone types in human retina was determined using anti-peptide antibodies that recognize specific amino acid sequences in green/red opsin and blue opsin. These antibodies together with an anti-peptide antibody against Tc alpha were used in double labeling experiments to demonstrate the presence of the Tc alpha peptide in all types of cones. cDNA clones corresponding to human rod and cone transducin alpha subunit (Tr alpha and Tc alpha) genes were isolated. Southern blot analyses of human genomic DNA suggest that there is only one rod T alpha gene but more than one cone T alpha gene. The multiple Tc alpha genes could be closely related genes or different Tc alpha alleles, or one could be a pseudogene.  相似文献   

6.
Uniquely for non-primate mammals, three classes of cone photoreceptors have been previously identified by microspectrophotometry in two marsupial species: the polyprotodont fat-tailed dunnart (Sminthopsis crassicaudata) and the diprotodont honey possum (Tarsipes rostratus). This report focuses on the genetic basis for these three pigments. Two cone pigments were amplified from retinal cDNA of both species and identified by phylogenetics as members of the short wavelength-sensitive 1 (SWS1) and long wavelength-sensitive (LWS) opsin classes. In vitro expression of the two sequences from the fat-tailed dunnart confirmed the peak absorbances at 363 nm in the UV for the SWS1 pigment and 533 nm for the LWS pigment. No additional expressed cone opsin sequences that could account for the middle wavelength cones could be amplified. However, amplification from the fat-tailed dunnart genomic DNA with RH1 (rod) opsin primer pairs identified two genes with identical coding regions but sequence differences in introns 2 and 3. Uniquely therefore for a mammal, the fat-tailed dunnart has two copies of an RH1 opsin gene. This raises the possibility that the middle wavelength cones express a rod rather than a cone pigment.  相似文献   

7.
8.
Although a given retina typically contains several visual pigments, each formed from a retinal chromophore bound to a specific opsin protein, single photoreceptor cells have been thought to express only one type of opsin. This design maximizes a cell''s sensitivity to a particular wavelength band and facilitates wavelength discrimination in retinas that process color. We report electrophysiological evidence that the ultraviolet-sensitive cone of salamander violates this rule. This cell contains three different functional opsins. The three opsins could combine with the two different chromophores present in salamander retina to form six visual pigments. Whereas rods and other cones of salamander use both chromophores, they appear to express only one type of opsin per cell. In visual pigment absorption spectra, the bandwidth at half-maximal sensitivity increases as the pigment''s wavelength maximum decreases. However, the bandwidth of the UV-absorbing pigment deviates from this trend; it is narrow like that of a red-absorbing pigment. In addition, the UV-absorbing pigment has a high apparent photosensitivity when compared with that of red- and blue-absorbing pigments and rhodopsin. These properties suggest that the mechanisms responsible for spectrally tuning visual pigments separate two absorption bands as the wavelength of maximal sensitivity shifts from UV to long wavelengths.  相似文献   

9.
Bleached pigment activates transduction in salamander cones   总被引:6,自引:3,他引:3       下载免费PDF全文
We have used suction electrode recording together with rapid steps into 0.5 mM IBMX solution to investigate changes in guanylyl cyclase velocity produced by pigment bleaching in isolated cones of the salamander Ambystoma tigrinum. Both backgrounds and bleaches accelerate the time course of current increase during steps into IBMX. We interpret this as evidence that the velocity of the guanylyl cyclase is increased in background light or after bleaching. Our results indicate that cyclase velocity increases nearly linearly with increasing percent pigment bleached but nonlinearly (and may saturate) with increasing back-ground intensity. In cones (as previously demonstrated for rods), light-activated pigment and bleached pigment appear to have somewhat different effects on the transduction cascade. The effect of bleaching on cyclase rate is maintained for at least 15-20 min after the light is removed, much longer than is required after a bleach for circulating current and sensitivity to stabilize in an isolated cone. The effect on the cyclase rate can be completely reversed by treatment with liposomes containing 11-cis retinal. The effects of bleaching can also be partially reversed by beta-ionone, an analogue of the chromophore 11- cis-retinal which does not form a covalent attachment to opsin. Perfusion of a bleached cone with beta-ionone produces a rapid increase in circulating current and sensitivity, which rapidly reverses when the beta-ionone is removed. Perfusion with beta-ionone also causes a partial reversal of the bleach-induced acceleration of cyclase velocity. We conclude that bleaching produces an "equivalent background" excitation of the transduction cascade in cones, perhaps by a mechanism similar to that in rods.  相似文献   

10.
Previously, we reported that an opsin (Rc-MS) belonging to the SWS2 group opsins is expressed in bullfrog green rods [Hisatomi, O. et al., FEBS Lett., 1999, 447, 44-48]. An anti-Rc-MS antiserum recognized the cones of the Japanese common newt, Cynops pyrrhogaster, which has no green rods. We isolated a cDNA encoding an SWS2 group opsin (Cp-SWS2) from this newt and found that Cp-SWS2 is expressed in a small population of the cones. Our results suggest that SWS2 opsins can be expressed in either green rods or cones of caudata. It seems reasonable to suppose that green rods arose before amphibia were divided into caudata and anura.  相似文献   

11.
12.
BACKGROUND: Although photoreception is best understood in rods and cones, it is increasingly clear that these are not the only photoreceptive cells of the vertebrate retina. While considerable attention has been paid to the role of melanopsin in the generation of intrinsic light sensitivity in the retinal ganglion cells of mammals, nothing is known about the photoreceptive capacity of the horizontal cells of the fish retina in which both VA opsin and melanopsin are expressed. As yet, there has been little more than speculation as to the physiological function of these opsins within local retinal circuit neurons. RESULTS: VA opsin and melanopsin have been isolated and localized within the well-characterized cyprinid retina of the roach (Rutilus rutilus). Parallel electrophysiological studies identified a novel subtype of horizontal cell (HC-RSD) characterized by a depolarizing response that fits an opsin photopigment with a lambda(max) of 477 nm. The HC-RSD cells mediate responses to light that are characterized by long integration times, well beyond those observed for rods and cones. Significantly, HC-RSD responses persist when the conventional photoreceptor inputs are saturated by background light. CONCLUSIONS: The syncytium of coupled horizontal cells has long been considered to provide a signal of overall retinal irradiance. Our data suggest that this light information is, at least in part, derived from a population of intrinsically photosensitive VA opsin and/or melanopsin horizontal cells.  相似文献   

13.
Our ability to see in bright light depends critically on the rapid rate at which cone photoreceptors detect and adapt to changes in illumination. This is achieved, in part, by their rapid response termination. In this study, we investigate the hypothesis that this rapid termination of the response in red cones is dependent on interactions between the 9-methyl group of retinal and red cone opsin, which are required for timely metarhodopsin (Meta) II decay. We used single-cell electrical recordings of flash responses to assess the kinetics of response termination and to calculate guanylyl cyclase (GC) rates in salamander red cones containing native visual pigment as well as visual pigment regenerated with 11-cis 9-demethyl retinal, an analogue of retinal in which the 9-methyl group is missing. After exposure to bright light that photoactivated more than approximately 0.2% of the pigment, red cones containing the analogue pigment had a slower recovery of both flash response amplitudes and GC rates (up to 10 times slower at high bleaches) than red cones containing 11-cis retinal. This finding is consistent with previously published biochemical data demonstrating that red cone opsin regenerated in vitro with 11-cis 9-demethyl retinal exhibited prolonged activation as a result of slowed Meta II decay. Our results suggest that two different mechanisms regulate the recovery of responsiveness in red cones after exposure to light. We propose a model in which the response recovery in red cones can be regulated (particularly at high light intensities) by the Meta II decay rate if that rate has been inhibited. In red cones, the interaction of the 9-methyl group of retinal with opsin promotes efficient Meta II decay and, thus, the rapid rate of recovery.  相似文献   

14.
15.
The renewal of protein in retinal rods and cones   总被引:32,自引:24,他引:8       下载免费PDF全文
The renewal of protein in retinal rods and cones has been analyzed by quantitative electron microscope radioautography in adult frogs injected with a mixture of radioactive amino acids. Protein synthesis occurs predominantly in the ergastoplasm, localized in the myoid region of the photoreceptor cells. Much of the newly formed protein next flows through the Golgi complex. In rods, a large proportion of the protein then moves past the mitochondria of the ellipsoid segment, passes through the connecting cilium into the outer segment, and is there assembled into membranous discs at the base of that structure. Discs are formed at the rate of 36 per day in red rods and 25 per day in green rods at 22.5° C ambient temperature. In cones, a small proportion of the protein is similarly displaced to the outer segment. However, no new discs are formed. Instead, the protein becomes diffusely distributed throughout the cone outer segment. Low levels of radioactivity have been detected, shortly after injection, in the mitochondria, nucleus, and synaptic bodies of rods and cones. Nevertheless, in these organelles, the renewal process also appears to involve the utilization of protein formed in the ergastoplasm of the myoid.  相似文献   

16.
Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.  相似文献   

17.
Origin and functional impact of dark noise in retinal cones   总被引:8,自引:0,他引:8  
Rieke F  Baylor DA 《Neuron》2000,26(1):181-186
Spontaneous fluctuations in the electrical signals of the retina's photoreceptors impose a fundamental limit on visual sensitivity. While noise in the rods has been studied extensively, relatively little is known about the noise of cones. We show that the origin of the dark noise in salamander cones varies with cone type. Most of the noise in long wavelength-sensitive (L) cones arose from spontaneous activation of the photopigment, which is a million-fold less stable than the rod photopigment rhodopsin. Most of the noise in short wavelength-sensitive (S) cones arose in a later stage of the transduction cascade, as the photopigment was relatively stable. Spontaneous pigment activation effectively light adapted L cones in darkness, causing them to have a smaller and briefer dim flash response than S cones.  相似文献   

18.
11-cis-Retinol has previously been shown in physiological experiments to promote dark adaptation and recovery of photoresponsiveness of bleached salamander red cones but not of bleached salamander red rods. The purpose of this study was to evaluate the direct interaction of 11-cis-retinol with expressed human and salamander cone opsins, and to determine by microspectrophotometry pigment formation in isolated salamander photoreceptors. We show here in a cell-free system using incorporation of radioactive guanosine 5′-3-O-(thio)triphosphate into transducin as an index of activity, that 11-cis-retinol inactivates expressed salamander cone opsins, acting an inverse agonist. Similar results were obtained with expressed human red and green opsins. 11-cis-Retinol had no significant effect on the activity of human blue cone opsin. In contrast, 11-cis-retinol activates the expressed salamander and human red rod opsins, acting as an agonist. Using microspectrophotometry of salamander cone photoreceptors before and after bleaching and following subsequent treatment with 11-cis-retinol, we show that 11-cis-retinol promotes pigment formation. Pigment was not formed in salamander red rods or green rods (containing the same opsin as blue cones) treated under the same conditions. These results demonstrate that 11-cis-retinol is not a useful substrate for rod photoreceptors although it is for cone photoreceptors. These data support the premise that rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type. These mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.11-cis-Retinol is the precursor to 11-cis-retinal, the 11-cis-aldehyde form of vitamin A and the chromophore that combines covalently with rod and cone opsin proteins to form visual pigments. 11-cis-Retinal is consumed during visual signaling, and its continual synthesis is required. Photon absorption by the visual pigments causes the isomerization of its chromophore to the all-trans configuration. This initiates two processes critical for vision: activation of the photoreceptor cell and the eventual recovery of the original photosensitivity of the cells, requiring regeneration of the visual pigments. As cones are used for bright light vision, these two processes must work more rapidly in cones than in rods and thus cones have a higher requirement of 11-cis-retinoids as suggested by Rushton (1, 2).Photoreceptor activation begins with photoisomerization of the chromophore within the visual pigment. This results in a subsequent conformational change of the protein part of the visual pigment that is able to activate its G protein transducin, which in turn activates a PDE that lowers the concentration of cGMP and closes cGMP-gated ion channels. These steps comprise the visual signal transduction cascade (see Ref. 3 for review).The visual cycle involves regeneration of the visual pigment, which ultimately deactivates the protein and accomplishes the recovery of the photosensitivity of the photoreceptor cell. Classically, this process involves both the photoreceptor cell and the retinal pigment epithelium (RPE).4 After photoisomerization of the chromophore and formation of the active visual pigment, all-trans-retinal is released from the opsin and reduced to all-trans-retinol, which is then transported to the RPE where it is isomerized to 11-cis-retinol through a number of steps. In the RPE, 11-cis-retinol is oxidized to the aldehyde form, which is transported back to the photoreceptor cell and can be directly used by all of the opsins to regenerate an inactive pigment ready for photoactivation. The details of this model have been extensively reviewed (4, 5). Alternatively, recent work suggests that cones have an additional source of 11-cis-retinoids from Müller cells (68). Like the RPE cells, Müller cells have been shown to be able to convert all-trans-retinol to 11-cis-retinol (6). Unlike in the RPE cells, 11-cis-retinol is not oxidized to 11-cis-retinal in Müller cells.Jones et al. (9) demonstrated that administration of 11-cis-retinol to bleached salamander red cones could restore photosensitivity. A logical conclusion was that red cones were able to oxidize 11-cis-retinol to the aldehyde and regenerate visual pigments although noncovalent binding of 11-cis-retinol to red cone opsins generating a light-sensitive complex could not be excluded. On the other hand, 11-cis-retinol does not restore photosensitivity to bleached salamander rod cells but appears to directly activate the cells (9, 10). The data suggested that the rods were not able to oxidize 11-cis-retinol, but that the retinol itself could activate the signal transduction cascade, and indeed we recently demonstrated that 11-cis-retinol acts as an agonist to expressed bovine rod opsin (11). Our aim here was to study the action of 11-cis-retinol on cone opsins and cone photoreceptor cells to determine the efficacy of an alternate visual cycle for cones.The photoreceptor cells used in this study are from tiger salamander, and the expressed opsins used for biochemical experiments are those from salamander and human. Photoreceptor cells are generally identified by cell morphology and the type of opsin it contains that can be further complicated by the findings that some cone cells have multiple opsins (12, 13). Recently genetic analysis has determined that opsins fall into five classes (reviewed in Refs. 14 and 15). We have studied opsins falling into four of these classes and use common color-derived names for the opsins and photoreceptor cells. The classic rod cells used for scotopic vision contain rhodopsin, the visual pigment for the rod opsin (RH1 opsin) and appeared red and thus have been designated as red rods. Some species such as salamanders have an additional rod cell whose photosensitivity is blue-shifted from that of the red rod and thus designated as green rods. In the tiger salamander, the green rods contain the identical opsin (SWS2 opsin) found in blue cones (16). The human blue cones contain an opsin from a different class (SWS1 opsin), which is homologous to the salamander UV cone opsin. The human red and green and salamander red cone opsins all belong to the same class of opsins (M/LWS opsins). Absorption properties of visual pigments are further modulated in some animals including the tiger salamander by use of 11-cis-retinal with an additional double bond (3,4-dehydro or A2 11-cis-retinal) resulting in red-shifted absorbance from pigments containing 11-cis-retinal (A1 11-cis-retinal).We show here that 11-cis-retinol is not an agonist to cone opsins and does not itself generate a light-sensitive opsin. We further show using microspectrophotometry that both red and blue salamander cone cells regenerate visual pigments from 11-cis-retinol, whereas pigments could not be regenerated with 11-cis-retinol in bleached salamander red and green rods even though the latter contains the same opsin as the salamander blue cone. Thus, rods and cones have mechanisms for handling retinoids and regenerating visual pigment that are specific to photoreceptor type, and these mechanisms are critical to providing regenerated pigments in a time scale required for the function of these two types of photoreceptors.  相似文献   

19.
In visual pigments, opsin proteins regulate the spectral absorption of a retinal chromophore by mechanisms that change the energy level of the excited electronic state relative to the ground state. We have studied these mechanisms by using photocurrent recording to measure the spectral sensitivities of individual red rods and red (long-wavelength-sensitive) and blue (short-wavelength-sensitive) cones of salamander before and after replacing the native 3-dehydro 11-cis retinal chromophore with retinal analogs: 11-cis retinal, 3-dehydro 9-cis retinal, 9-cis retinal, and 5,6-dihydro 9-cis retinal. The protonated Schiff's bases of analogs with unsaturated bonds in the ring had broader spectra than the same chromophores bound to opsins. Saturation of the bonds in the ring reduced the spectral bandwidths of the protonated Schiff's bases and the opsin-bound chromophores and made them similar to each other. This indicates that torsion of the ring produces spectral broadening and that torsion is limited by opsin. Saturating the 5,6 double bond in retinal reduced the perturbation of the chromophore by opsin in red and in blue cones but not in red rods. Thus an interaction between opsin and the chromophoric ring shifts the spectral maxima of the red and blue cone pigments, but not that of the red rod pigment.  相似文献   

20.
Bird colour vision is mediated by single cones, while double cones and rods mediate luminance vision in bright and dim light, respectively. In daylight conditions, birds use colour vision to discriminate large objects such as fruit and plumage patches, and luminance vision to detect fine spatial detail and motion. However, decreasing light intensity favours achromatic mechanisms and eventually, in dim light, luminance vision outperforms colour vision in all visual tasks. We have used behavioural tests in budgerigars (Melopsittacus undulatus) to investigate how single cones, double cones and rods contribute to spectral sensitivity for large (3.4°) static monochromatic stimuli at light intensities ranging from 0.08 to 63.5 cd/m2. We found no influences of rods at any intensity level. Single cones dominate the spectral sensitivity function at intensities above 1.1 cd/m2, as predicted by a receptor noise-limited colour discrimination model. Below 1.1 cd/m2, spectral sensitivity is lower than expected at all wavelengths except 575 nm, which corresponds to double cone function. We suggest that luminance vision mediated by double cones restores visual sensitivity when single cone sensitivity quickly decreases at light intensities close to the absolute threshold of colour vision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号