首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3T3-L1 adipocytes have proven difficult to transfect with plasmid-encoded cDNAs or even infect with virally-derived cDNAs. We have developed and characterized a 3T3-L1 adipocyte cell line stably expressing the truncated receptor for coxsackievirus and adenovirus receptor (CAR) for its ability to be infected with adenoviruses at a low multiplicity of infection (m.o.i.). Using green fluorescent protein driven by the cytomegalovirus promoter in adenovirus fiber type 5 we compared infection efficiencies of CAR adipocytes versus the parental 3T3-L1 adipocytes. As assessed by immunofluorescence, CAR adipocytes were infected at approximately 100-fold greater efficiency than regular 3T3-L1 adipocytes. The efficiency of transduction for the CAR adipocytes was >90% at multiplicities of infection of 50 whereas standard adipocytes were poorly transduced even at an m.o.i. of 2000. Since many investigators studying insulin action use 3T3-L1 adipocytes, we compared CAR adipocytes versus regular adipocytes and showed that the two cell lines were similar with respect to insulin stimulation of insulin receptor, MAPK, and Akt phosphorylation and basal- and insulin-stimulated glucose transport. In addition, CAR adipocytes accumulated GLUT4 and SCD1 proteins during the adipogenesis program with the same time course as regular 3T3-L1 adipocytes. Lastly, CAR adipocytes produced and secreted the adipose-specific hormone Acrp30. These data suggest 3T3-L1CARDelta1 adipocytes are virtually indistinguishable from their parental cells, but demonstrate a significant advantage with improved efficiency of adenoviral transduction for gain or deletion of function studies.  相似文献   

2.
Hirata T  Unoki H  Bujo H  Ueno K  Saito Y 《FEBS letters》2006,580(21):5117-5121
The tumor necrosis factor-alpha (TNF-alpha) expression has been reported to be largely dependent on the size of adipocytes. We herein investigated the gene regulation of diacylglycerol O-acyltransferase (DGAT) in order to clarify the mechanism of TNF-alpha expression induced in large adipocytes. 3T3-L1 cells were cultured in the presence of 5 mM or 25 mM glucose to generate adipocytes from which the triglyceride content differs. The expression of TNF-alpha, DGAT1, and DGAT2 were upregulated in adipocytes cultured with 25 mM glucose. Furthermore, knockdown of DGAT1 gene significantly inhibited the TNF-alpha expression. Finally, the DGAT1 expression levels were closely related to the TNF-alpha level in 3T3-L1 adipocytes.  相似文献   

3.
We have established a novel preadipocyte cell line from mouse adult mature adipocytes. The mature adipocytes were isolated from fat tissues by taking only the floating population of mature fat cells. The isolated mature adipocytes were de-differentiated into fibroblast-like cells. The in vitro studies showed that the cells could re-differentiate into mature adipocytes after over 20 passages. The in vivo transplantation study also demonstrated that the cells had the full potential to differentiate into mature adipocytes, which has not been shown for the 3T3-L1 preadipocyte cell line derived from mouse embryo. We have further analyzed the expression profile of key fat regulatory genes such as the peroxisome proliferator-activated receptorgamma or CCAAT/enhancer-binding protein gene families. We conclude that our cell line could be used as a preferred alternative to 3T3-L1, potentially reflecting the characteristics of mature adipocytes more, since the cell line is actually derived from adult mature adipocytes.  相似文献   

4.
The role of atypical protein kinase C (aPKC) in insulin-stimulated glucose transport in myocytes and adipocytes is controversial. Whereas studies involving the use of adenovirally mediated expression of kinase-inactive aPKC in L6 myocytes and 3T3/L1 and human adipocytes, and data from knock-out of aPKC in adipocytes derived from mouse embryonic stem cells and subsequently derived adipocytes, suggest that aPKCs are required for insulin-stimulated glucose transport, recent findings in studies of aPKC knockdown by small interfering RNA (RNAi) in 3T3/L1 adipocytes are conflicting. Moreover, there are no reports of aPKC knockdown in myocytes, wherein insulin effects on glucose transport are particularly relevant for understanding whole body glucose disposal. Presently, we exploited the fact that L6 myotubes and 3T3/L1 adipocytes have substantially different (30% nonhomology) major aPKCs, viz. PKC-zeta in L6 myotubes and PKC-lambda in 3T3/L1 adipocytes, that nevertheless can function interchangeably for glucose transport. Accordingly, in L6 myotubes, RNAi-targeting PKC-zeta, but not PKC-lambda, markedly depleted aPKC and concomitantly inhibited insulin-stimulated glucose transport; more importantly, these depleting/inhibitory effects were rescued by adenovirally mediated expression of PKC-lambda. Conversely, in 3T3/L1 adipocytes, RNAi constructs targeting PKC-lambda, but not PKC-zeta, markedly depleted aPKC and concomitantly inhibited insulin-stimulated glucose transport; here again, these depleting/inhibitory effects were rescued by adenovirally mediated expression of PKC-zeta. These findings in knockdown and, more convincingly, rescue studies, strongly support the hypothesis that aPKCs are required for insulin-stimulated glucose transport in myocytes and adipocytes.  相似文献   

5.
FX Shen  X Gu  W Pan  WP Li  W Li  J Ye  LJ Yang  XJ Gu  LS Ni 《Experimental cell research》2012,318(18):2377-2384
OBJECTIVE: Aquaglyceroporin 7 (AQP7) is required for efflux of glycerol from adipocytes. In this study, we aimed to analyze expression profiles of AQP7 in the different differentiation phases of adipocytes and to investigate the role of AQP7 in the insulin resistance of adipocytes. Methods: 3T3-L1 pre-adipocyte cells were induced to be fully differentiated adipocytes and then insulin resistance was induced by Dexamethasone (DXM) or TNF-α. Adenovirus vector with over-expression AQP7 (Ad-AQP7) was constructed and transfected into adipocytes. The expression level of AQP7 and phosphorylated PKB (p-PKB) were measured. The glycerol released from adipocytes and glucose consuming rate were tested too. Results: AQP7 expression was gradually up-regulated along with the differentiation processing of 3T3-L1 preadipocytes, which was consistent with the expression level of p-PKB. Dexamethasone down-regulated the expression of AQP7, p-PKB and the glycerol content in adipocytes. Over-expression of AQP7 by transfecting Ad-AQP7 to insulin resistant adipocytes restored the phosphorylation of PKB and attenuated the glycerol secretion and glucose consuming rate of adipocytes. Conclusions: AQP7 is down-regulated in adipocytes with insulin resistance. The over-expression of AQP7 contributes to improve insulin resistance in adipocytes, which is potentially correlated with the increased phosphorylation of PKB.  相似文献   

6.
Overexpression of the Homo sapiens LYR motif containing 1 (LYRM1) causes mitochondrial dysfunction and induces insulin resistance in 3T3-L1 adipocytes. α-Lipoic acid (α-LA), a dithiol compound with antioxidant properties, improves glucose transport and utilization in 3T3-L1 adipocytes. The aim of this study was to investigate the direct effects of α-LA on reactive oxygen species (ROS) production and insulin sensitivity in LYRM1 overexpressing 3T3-L1 adipocytes and to explore the underlying mechanism. Pretreatment with α-LA significantly increased both basal and insulin-stimulated glucose uptake and insulin-stimulated GLUT4 translocation, while intracellular ROS levels in LYRM1 overexpressing 3T3-L1 adipocytes were decreased. These changes were accompanied by a marked upregulation in expression of insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt following treatment with α-LA. These results indicated that α-LA protects 3T3-L1 adipocytes from LYRM1-induced insulin resistance partially via its capacity to restore mitochondrial function and/or increase phosphorylation of IRS-1 and Akt.  相似文献   

7.
1. The effects of fasting on the neutral lipid synthesis to insulin and/or epinephrine in isolated fat cells have been examined using [1-14C]glucose. 2. The ability of adipocytes from starved rats to synthesize fatty acids from both labeled substrates was markedly diminished compared to adipocytes from control rats. 3. The response of lipogenic stimulation to insulin at all concentrations tested was greatly diminished in adipocytes from 24 hr starved rats. 4. [1-14C]glucose utilization rates in the absence or in the presence of insulin were not significantly different in adipocytes from 24 hr starved rats as compared with control adipocytes, although basal and insulin stimulated glyceride-glycerol synthesis were significantly higher in starved adipocytes. 5. Epinephrine acutely inhibited [1-14C]acetate incorporation into fatty acids for insulin-stimulated lipogenesis in control adipocytes, in contrast, this lipolytic agent strongly increased [1-14C]glucose conversion to triacylglycerols. 6. In both cases, the differences in lipid synthesis capacities found in both nutritional states were abolished by epinephrine.  相似文献   

8.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

9.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

10.
《Autophagy》2013,9(6):754-763
Adipose tissue lipoatrophy caused by caveolin gene deletion in mice is not linked to defective adipocyte differentiation. We show that adipose tissue development cannot be rescued by endothelial specific caveolin-1 re-expression, indicating primordial role of caveolin in mature adipocytes. Partial or total caveolin deficiency in adipocytes induced broad protein expression defects, including but not limited to previously described down-regulation of Insulin Receptor. Global alterations in protein turnover, and accelerated degradation of long-lived proteins were found in caveolin-deficient adipocytes. Lipidation of endogenous LC3 autophagy marker and distribution of GFP-LC3 into aggregates demonstrated activated autophagy in the absence of caveolin-1 in adipocytes. Furthermore, electron microscopy revealed autophagic vacuoles in caveolin-1 deficient but not control adipocytes. Surprisingly, significant levels of lipidated LC3-II were found around lipid droplets of normal adipocytes, maintained in nutrient rich conditions or isolated from fed mice, which do not display autophagy. Altogether, these data indicate that caveolin deficiency induce autophagy in adipocytes, a feature that is not a physiological response to fasting in normal fat cells. This likely resulted from defective insulin and lipolytic responses that converge in chronic nutrient shortage in adipocytes lacking caveolin-1. This is the first report of a pathological situation with autophagy as an adaptative response to adipocyte failure.  相似文献   

11.
STAT6 is abundantly expressed in 3T3-L1 preadipocytes and adipocytes but activating ligands are not well defined. In this report, we provide evidence that interleukin 4 (IL-4) induced JAK2-mediated STAT6 tyrosine phosphorylation and DNA binding in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. Loss of IL-4-mediated STAT6 tyrosine phosphorylation occurred 2 days after preadipocytes were induced to differentiate into adipocytes but when cells remained phenotypically preadipocytes. 3T3-L1 adipocytes were still responsive to IL-4 through tyrosine phosphorylation of other cellular proteins. We conclude that IL-4 signals through STAT6 in 3T3-L1 preadipocytes but not in 3T3-L1 adipocytes. This differentiation-dependent loss of STAT6 activation may be critical for distinct biological effects of IL-4 in 3T3-L1 preadipocytes and adipocytes.  相似文献   

12.
1. Brown adipocytes were isolated from the interscapular depot of male rats maintained at approx. 21 degrees C. In some experiments parallel studies were made with white adipocytes from the epididymal depot. 2. Insulin increased and noradrenaline decreased [U-14C]glucose incorporation into fatty acids by brown adipocytes. Brown adipocytes differed from white adipocytes in that exogenous fatty acid (palmitate) substantially decreased fatty acid synthesis from glucose. Both noradrenaline and insulin increased lactate + pyruvate formation by brown adipocytes. Brown adipocytes converted a greater proportion of metabolized glucose into lactate + pyruvate and a smaller proportion into fatty acids than did white adipocytes. 3. In brown adipocytes, when fatty acid synthesis from [U-14C]glucose was decreased by noradrenaline or palmitate, incorporation of 3H2O into fatty acids was also decreased to an extent which would not support proposals for extensive recycling into fatty acid synthesis of acetyl-CoA derived from fatty acid oxidation. 4. In the absence of glucose, [U-14C]lactate was a poor substrate for lipogenesis in brown adipocytes, but its use was facilitated by glucose. When brown adipocytes were incubated with 1 mM-lactate + 5 mM-glucose, lactate-derived carbon generally provided at least 50% of the precursor for fatty acid synthesis. 5. Both insulin and noradrenaline increased [U-14C]glucose conversion into CO2 by brown adipocytes (incubated in the presence of lactate) and, in combination, stimulation of glucose oxidation by these two agents showed synergism. Rates of 14CO2 formation from glucose by brown adipocytes were relatively small compared with maximum rates of oxygen consumption by these cells, suggesting that glucose is unlikely to be a major substrate for thermogenesis. 6. Brown adipocytes from 6-week-old rats had considerably lower maximum rates of fatty acid synthesis, relative to cell DNA content, than white adipocytes. By contrast, rates of fatty acid synthesis from 3H2O in vivo were similar in the interscapular and epididymal fat depots. Expressed relative to activities of fatty acid synthase or ATP citrate lyase, however, brown adipocytes synthesized fatty acids as effectively as did white adipocytes. It is suggested that the cells most active in fatty acid synthesis in the brown adipose tissue are not recovered fully in the adipocyte fraction during cell isolation. Differences in rates of fatty acid synthesis between brown and white adipocytes were less apparent at 10 weeks of age.  相似文献   

13.
Apelin, a cytokine mainly secreted by adipocytes, is closely related with insulin resistance. The underlying molecular mechanisms of how apelin affects insulin resistance, however, are poorly understood. This study aimed to investigate the effect of apelin on glucose metabolism and insulin resistance in 3T3-L1 adipocytes. After 10 ng/ml TNF-α treatment for 24 h, insulin-stimulated glucose uptake was reduced by 47% in 3T3-L1 adipocytes. Apelin treatment improved glucose uptake in a time- and dose-dependent manner. Treatment of 1,000 nM apelin for 60 min maximally augmented glucose uptake in insulin-resistant 3T3-L1 adipocytes. Furthermore, apelin pre-incubation also increased adipocytes' insulin-stimulated glucose uptake, and PI3K/Akt pathway were involved in these effects. In addition, immunocytochemistry staining and western blotting analysis indicated that apelin could increase glucose transporter 4 translocation from the cytoplasm to the plasma membrane. Apelin also increased the anti-inflammatory adipokine adiponectin mRNA expression while reducing that of pro-inflammatory adipokine interleukin-6 in insulin-resistant 3T3-L1 adipocytes. These results suggest that apelin stimulates glucose uptake through the PI3K/Akt pathway, promotes GLUT4 translocation from the cytoplasm to the plasma membrane, and modulates inflammatory responses in insulin-resistant 3T3-L1 adipocytes.  相似文献   

14.
15.
16.
Plasma membranes were isolated from 3T3-L1 adipocytes. Plasma membrane phosphodiesterase (PM-PDE) was measured in the presence of 5 microM cilostamide. Time course and cAMP dose response ranging from 0 to 2 microM were measured. PM-PDE remained linear up to 20 min. Non-linear curve fitting analysis showed that the low Km cAMP dose data fit a two component curve significantly better than a one component curve, indicating that there are two iso-forms of PDE in the plasma membrane of 3T3-L1 adipocytes, similar to swine adipocytes. The Km and Vmax values for this two component curve were Km1=0.12 microM, Vmax1=3.08 pmol min(-1) mg(-1) protein, and Km2=3.67 microM, Vmax2=83.8 pmol min(-1) mg(-1) protein. Inhibitors of PDE1, PDE2 and PDE5 failed to inhibit PM-PDE, as observed in swine adipocyte plasma membranes. However, PDE4 inhibitors were three-fold more effective at inhibiting PDE in 3T3-L1 PM compared to swine adipocyte PM. One mM 1, 3-dipropyl-8-p-sulfophenylxanthine (DPSPX) inhibited PM-PDE by approximately 75% in both preparations. These data demonstrate that PM-PDE is distinct from microsomal membrane PDE and may be responsible for extracellular cAMP metabolism to AMP in 3T3-L1 adipocytes.  相似文献   

17.
18.
Conversion to adipocytes and fatty acid composition were investigated in a clonal bone marrow preadipocyte line (H-1/A). The growing cells exhibited a fibroblastic appearance. After the cessation of growth, triacylglyceride (TG) synthesis in the cells increased as they incorporated precursor from the growth medium and became adipocytes. Hydrocortisone and insulin accelerated the TG synthesis in H-1/A cells in a dose-dependent manner when they were cultured in the growth medium containing 10% horse serum. The rate of conversion to adipocytes was reduced as the concentration of horse serum was decreased, and this reduction was not influenced by the addition of insulin and/or hydrocortisone. These results suggest that conversion to adipocytes of H-1/A cells is primarily dependent on some component(s) of the serum. Conversion to adipocytes of the cells may involve a process of differentiation since the conversion was completely inhibited when the cells were cultured in the presence of bromodeoxyuridine. Fatty acid composition was significantly different between adipose H-1/A cells and adipocytes derived from other marrow preadipocyte line MC3T3-G2/PA6 cells. Unsaturated fatty acids accounted for 76% of the fatty acid composition of adipose H-1/A cells; in contrast, saturated fatty acids constituted 65% of the fatty acid composition of the adipose MC3T3-G2/PA6 cells. These results suggest that there is a heterogeneity of preadipocytes in bone marrow. These two preadipocyte lines thus provide a useful tool for the study of marrow adipocytes and can also be used to analyze the hematopoietic microenvironment through studies of the effect of these cells on hematopoietic cell proliferation.  相似文献   

19.
The differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into brown and white adipocytes in comparison to Adipose tissue derived MSCs (AD-MSCs) were investigated in order to characterize their potency for future cell therapies. MSCs were isolated from ten UCB samples and six liposuction materials. MSCs were differentiated into white and brown adipocytes after characterization by flow cytometry. Differentiated adipocytes were stained with Oil Red O and hematoxylin/eosin. The UCP1 protein levels in brown adipocytes were investigated by immunofluoresence and western blot analysis. Cells that expressed mesenchymal stem cells markers (CD34?, CD45?, CD90+ and CD105+) were successfully isolated from UCB and adipose tissue. Oil Red O staining demonstrated that white and brown adipocytes obtained from AD-MSCs showed 85 and 61% of red pixels, while it was 3 and 1.9%, respectively for white and brown adipocytes obtained from UCB-MSCs. Fluorescence microscopy analysis showed strong uncoupling protein 1 (UCP1) signaling in brown adipocytes, especially which were obtained from AD-MSCs. Quantification of UCP1 protein amount showed 4- and 10.64-fold increase in UCP1 contents of brown adipocytes derived from UCB-MSCs and AD-MSCs, respectively in comparison to undifferentiated MSCs (P?<?0.004). UCB-MSCs showed only a little differentiation tendency into adipocytes means it is not an appropriate stem cell type to be differentiated into these cell types. In contrast, high differentiation efficiency of AD-MSCs into brown and white adipocytes make it appropriate stem cell type to use in future regenerative medicine of soft tissue disorders or fighting with obesity and its related disorders.  相似文献   

20.
K Lange  U Brandt 《FEBS letters》1990,276(1-2):39-41
The recent demonstration of a large cell surface-derived pool of insulin-sensitive glucose transporters, presumably concentrated in the microvilli of 3T3-L1 adipocytes, induced the assumption that in differentiated adipocytes, newly inserted plasma membrane areas may display restricted lateral mobility, thereby preventing diffusion of integral membrane proteins out of these areas into the adjoining plasma membrane. In order to test this assumption, the cell surface distributions of the two glucose transporter species expressed by 3T3-L1 cells were determined using specific antisera against the HepG2/erythrocyte transporter, GluT1, which is synthesized in both fibroblasts and adipocytes, and the adipocyte/muscle-specific transporter, GluT4, expressed for the first time 3-4 days after induction of adipose conversion. GluT1 was shown to be localized in the plasma membrane of both 3T3-L1 preadipocytes and adipocytes, whereas GluT4 was almost entirely restricted to the low density surface-derived vesicle (LDSV) fraction of 3T3-L1 adipocytes most likely consisting of microvilli-derived vesicles. In contrast to the minor portion of GluT4 found in the adipocyte plasma membrane fraction, equal amounts of the GluT1 protein were detected in both the plasma membrane and the LDSV fractions of adipocytes. Both transporter species were present in the microsomal and the LDSV fractions of adipocytes. The observed distribution of the two transporter species is in accordance with the postulated restriction of the lateral mobility in plasma membrane areas formed by newly inserted transgolgi vesicles of differentiated adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号