首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been considerable interest in recent years in the anti-tumor activities of flavonoids. Quercetin, a ubiquitous bioactive flavonoid, can inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the precise molecular mechanism by which quercetin induces apoptosis in cancer cells is poorly understood. The present study was undertaken to examine the effect of quercetin on cell viability and to determine its underlying mechanism in human glioma cells. Quercetin resulted in loss of cell viability in a dose- and time-dependent manner and the decrease in cell viability was mainly attributed to cell death. Quercetin did not increase reactive oxygen species (ROS) generation and the quercetin-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that quercetin treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) and Akt. Transient transfection with constitutively active forms of MEK and Akt protected against the quercetin-induced loss of cell viability. Quercetin-induced depolarization of mitochondrial membrane potential. Caspase activity was stimulated by quercetin and caspase inhibitors prevented the quercetin-induced loss of cell viability. Quercetin resulted in a decrease in expression of survivin, antiapoptotic proteins. Taken together, these findings suggest that quercetin results in human glioma cell death through caspase-dependent mechanisms involving down-regulation of ERK, Akt, and survivin.  相似文献   

2.

Objective

Cold atmospheric plasma (CAP) has recently been shown to selectively target cancer cells with minimal effects on normal cells. We systematically assessed the effects of CAP in the treatment of glioblastoma.

Methods

Three glioma cell lines, normal astrocytes, and endothelial cell lines were treated with CAP. The effects of CAP were then characterized for viability, cytotoxicity/apoptosis, and cell cycle effects. Statistical significance was determined with student''s t-test.

Results

CAP treatment decreases viability of glioma cells in a dose dependent manner, with the ID50 between 90-120 seconds for all glioma cell lines. Treatment with CAP for more than 120 seconds resulted in viability less than 35% at 24-hours posttreatment, with a steady decline to less than 20% at 72-hours. In contrast, the effect of CAP on the viability of NHA and HUVEC was minimal, and importantly not significant at 90 to 120 seconds, with up to 85% of the cells remained viable at 72-hours post-treatment. CAP treatment produces both cytotoxic and apoptotic effects with some variability between cell lines. CAP treatment resulted in a G2/M-phase cell cycle pause in all three cell lines.

Conclusions

This preliminary study determined a multi-focal effect of CAP on glioma cells in vitro, which was not observed in the non-tumor cell lines. The decreased viability depended on the treatment duration and cell line, but overall was explained by the induction of cytotoxicity, apoptosis, and G2/M pause. Future studies will aim at further characterization with more complex pre-clinical models.  相似文献   

3.
Suppression of apoptosis has been implicated as a mechanism for the hepatocarcinogenicity of the peroxisome proliferator class of non- genotoxic carcinogens. The ability of the peroxisome proliferator nafenopin to suppress or delay the onset of liver apoptosis was investigated using primary cultures of rat hepatocytes and the Reuber hepatoma cell line FaO. 50 microM nafenopin reversibly maintained the viability of primary rat hepatocyte cultures which otherwise degenerated within 8 d of establishment. The maintenance of viability of hepatocyte monolayers was associated with a significant decrease in the number of cells exhibiting chromatin condensation patterns typical of apoptosis. Apoptosis could be induced in hepatocytes by administration of 5 ng/ml TGF beta 1. Co-addition of 50 microM nafenopin significantly reduced TGF beta 1-induced apoptosis by 50-60%. TGF beta 1 (1-5 ng/ml) also induced apoptosis in the FaO rat hepatoma cell line. Cell death was accompanied by detachment of FaO cells from the monolayer and detached cells exhibited chromatin condensation and non-random DNA fragmentation patterns typical of apoptosis. Co-addition of 50 microM nafenopin to TGF beta 1-treated FaO cultures significantly reduced the number of apoptotic cells detaching from the monolayer at 24 h. In contrast, nafenopin had no significant effect on FaO apoptosis induced by the DNA damaging agents etoposide and hydroxyurea. We conclude that suppression of liver cell death by apoptosis may play a role in the hepatocarcinogenicity of the peroxisome proliferators, although the extent of this protection is dependent on the nature of the apoptotic stimulus.  相似文献   

4.
Lysophosphatidic acid (LPA) is a phospholipid growth mediator found in serum at 2-20 microM. In many cell types, including human airway smooth muscle (HASM) cells, LPA-induced proliferation occurs at 10-100 microM LPA. At these concentrations LPA forms Ca2+ precipitates. The potential involvement of Ca2+ and Ca2+ LPA precipitates in LPA-induced HASM cell mitogenesis was investigated. In the absence of extracellular Ca2+, 10 and 30 microM LPA stimulated HASM cell mitogenesis. However, with 100 microM LPA in the absence of extracellular Ca2+, HASM cells exhibited a profound shape change and loss of viability, determined to be apoptosis by both DNA staining and assessment of cytosolic nucleosomal reactivity. A bioassay based on the adenosine 3':5'-cyclic monophosphate response of C62B rat glioma cells was used to measure the bioactivity of LPA solutions prepared in Ca2+ free and Ca2+ containing medium. After 24 h, a 100 microM LPA solution in Ca2+ free medium contained markedly greater bioactivity than a 100 microM LPA solution made in Ca2+ containing medium. In summary, formation of Ca2+ LPA precipitates decreases the amount of biologically active LPA in solution, and high concentrations of bioactive LPA achieved in Ca2+ free but not in Ca2+ containing medium induce apoptosis of HASM cells.  相似文献   

5.
Summary The rates of spontaneous cell detachment, cell viability, and apoptosis in primary cultures of rat hepatocytes plated at high and low density were compared. Apoptosis was frequent in detached cells, and the rates of cell detachment and apoptosis were greater in high-density than in low-density cultures. Among attached cells, more cells had condensed or fragmented nuclei in high-density than in low-density cultures. Further, ladder-like DNA fragmentation was not seen in low-cell-density cultures but was clearly evident in high-density cultures. Bax was more highly expressed in cells cultured at high density, and on collagen vs. matrigel, whereas changes of Bcl-2 and Fas expression observed in culture appeared unrelated to the rate of apoptosis. The rate of hepatocyte apoptosis appeared to be identical in low-density cultures on collagen 1 and matrigel, but when cells were cultured at high density, matrigel suppressed apoptosis by more than 50% at 36 h. In hepatocytes cultured on collagen 1, dexamethasone (0.1 μM) suppressed apoptosis in both low- and high-density cultures; higher doses had no further effects. In high density cultures, aurintricarboxylic acid (10 μM) suppressed apoptosis and this improved cell attachment at 48 h. It is concluded that cell viability in primary cultures of rat hepatocytes grown on collagen I is dependent on optimal culture density and that the cell population is regulated, at least in part, by apoptosis. Corticosteroids suppress spontaneous apoptosis of cultured hepatocytes in a non-dose-dependent manner, whereas matrigel abolishes apoptosis induced by increasing cell density. Bax may be an important protein in the cell density and cell matrix-dependent regulation of apoptosis in cultured hepatocytes.  相似文献   

6.
Panaxydol is a naturally occurring non-peptidyl small molecule isolated from the lipophilic fractions of Panax notoginseng, a well-known Chinese traditional medicine. Previous studies have shown that panaxydol inhibited the growth of various kinds of malignant cell lines. To date, there has been no report concerning the effect of panaxydol on cell growth inhibition in glioma cells. In this paper, we examined panaxydol's antiproliferation and proapoptotic effects on rat C6 glioma cells and investigated its mechanism. Cell growth inhibition of panaxydol was determined by MTT reduction assay. Apoptosis of cells was measured by both Hoechst 33258 staining and Annexin V analysis. It was found that panaxydol markedly inhibited proliferation of C6 cells in a dose-dependent manner with ID(50) of 40 microM. The cell apoptosis was observed at 48 h in the presence of panaxydol. In concert with these findings, Western blot analysis showed a decreased expression of bcl-2 and increased levels of Bax and caspase-3 in C6 cells treated by panaxydol. In conclusion, panaxydol has profound effects on growth and apoptosis of C6 cells, suggesting that panaxydol may be a potential candidate for the treatment of malignant gliomas.  相似文献   

7.
Agents that are capable of inducing selective apoptosis of cancer cells are receiving considerable attention in developing novel cancer-preventive approaches. In the present study, employing normal human prostate epithelial cells (NHPE), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate adenocarcinoma (CA-HPV-10) cells, we evaluated the growth-inhibitory effects of apigenin, a flavonoid abundantly present in fruits and vegetables. Apigenin treatment to NHPE and PZ-HPV-7 resulted in almost similar growth inhibitory responses of low magnitude. In sharp contrast, apigenin treatment resulted in a significant decrease in cell viability of CA-HPV-10 cells. Similar selective growth inhibitory effects were also observed for human epidermoid carcinoma A431 cells compared to normal human epidermal keratinocytes. Apigenin treatment resulted in significant apoptosis of CA-HPV-10 cells as evident from (i) DNA ladder assay, (ii) fluorescence microscopy, and (iii) TUNEL assay, whereas the NHPE and PZ-HPV-7 cells did not undergo apoptosis but showed exclusive necrotic staining only at a high dose of 40 microM. Apigenin (1-10 microM) also resulted in a dose-dependent G2-M phase cell cycle arrest of CA-HPV-10 cells but not of PZ-HPV-7 cells. The growth-inhibitory and apoptotic potential of apigenin was also observed in a variety of prostate carcinoma cells representing different stage and androgen responsiveness. Apigenin may be developed as a promising chemopreventive and/or chemotherapeutic agent against prostate cancer.  相似文献   

8.
The kinetic parameters of monoamine oxidase (MAO; E.C 1.4.3.4) and catechol-O-methyltransferase (COMT; EC 2.1.1.6) were evaluated in extracts of adrenergic and non-adrenergic mouse neuroblastoma cells and in rat glioma cells. Using the naturally-occurring substrates tyramine, tryptamine, serotonin and norepinephrine, the affinity of MAO for a given substrate was independent of the presence of the catecholaminergic pathway or cell type used, with apparent Km values ranging from 8-14 microM for tryptamine to 510-580 microM for norepinephrine. The MAO activity in glioma cells was substantially greater than in either neuroblastoma clone, but Vmax values varied little with substrate among cell lines. Both the neuronal and glial COMT had a similar Km for 1-norepinephrine (200 microM); the corresponding Vmax values were also similar among the different cell lines, but represented only 2-10% of the maximal MAO activity. Neuroblastoma and glioma cells, when grown from early logarithmic to stationary phase, showed no significant changes in specific activity of either MAO or COMT. Growth of cells for 3 days with 1 mM-N6,O2'-dibutyryl adenosine-3',5'-cyclic monophosphate resulted in no marked change in either MAO or COMT activity. These results suggest that in neurons neither MAO nor COMT plays a major role in the type of transmitter inactivation that is analogous to that of acetylcholinesterase in cholinergic synapses. The occurrence of considerable MAO and acetylcholinesterase activities in glioma cells may indicate a role for these cells in neurotransmitter inactivation.  相似文献   

9.
Studies were conducted to determine the comparative effects of tocopherols and tocotrienols on preneoplastic (CL-S1), neoplastic (-SA), and highly malignant (+SA) mouse mammary epithelial cell growth and viability in vitro. Over a 5-day culture period, treatment with 0-120 microM alpha- and gamma-tocopherol had no effect on cell proliferation, whereas growth was inhibited 50% (IC50) as compared with controls by treatment with the following: 13, 7, and 6 microM tocotrienol-rich-fraction of palm oil (TRF); 55, 47, and 23 microM delta-tocopherol; 12, 7, and 5 microM alpha-tocotrienol; 8, 5, and 4 microM gamma-tocotrienol; or 7, 4, and 3 microM delta-tocotrienol in CL-S1, -SA and +SA cells, respectively. Acute 24-hr exposure to 0-250 microM alpha- or gamma-tocopherol (CL-S1, -SA, and +SA) or 0-250 microM delta-tocopherol (CL-S1) had no effect on cell viability, whereas cell viability was reduced 50% (LD50) as compared with controls by treatment with 166 or 125 microM delta-tocopherol in -SA and +SA cells, respectively. Additional LD50 doses were determined as the following: 50, 43, and 38 microM TRF; 27, 28, and 23 microM alpha-tocotrienol; 19, 17, and 14 microM gamma-tocotrienol; or 16, 15, or 12 microM delta-tocotrienol in CL-S1, -SA, and +SA cells, respectively. Treatment-induced cell death resulted from activation of apoptosis, as indicated by DNA fragmentation. Results also showed that CL-S1, -SA, and +SA cells preferentially accumulate tocotrienols as compared with tocopherols, and this may partially explain why tocotrienols display greater biopotency than tocopherols. These data also showed that highly malignant +SA cells were the most sensitive, whereas the preneoplastic CL-S1 cells were the least sensitive to the antiproliferative and apoptotic effects of tocotrienols, and suggest that tocotrienols may have potential health benefits in preventing and/or reducing the risk of breast cancer in women.  相似文献   

10.
The effects of benzo[a]pyrene (BAP) and formaldehyde (HCHO), alone and combined, on cell growth and DNA damage were determined in primary cultures of rat tracheal epithelial cells dissociated from rat tracheas. Cell cultures treated with 25 microM BAP for 24 h or 200 microM HCHO for 90 min did not have a marked reduction in cell growth. However, their combined treatment reduced cell growth by 60% of control when cultures were exposed to BAP followed by HCHO as well as the reverse order. None of these treatments significantly decreased cell viability as judged by dye exclusion, nor did they enhance cell terminal differentiation as measured by cornified envelope formation. Alkaline elution analysis of DNA damage detected both DNA-protein crosslinks (DPC) and DNA single-strand breaks (SSB) as a result of HCHO treatment, whereas BAP treatment caused only SSB. While HCHO-induced SSB were repaired within 2 h, BAP-induced SSB were detected 3 days after treatment. Combined treatment of cell cultures with BAP followed by HCHO resulted in more SSB than was obtained from either agent alone, but less DPC than was detected from HCHO alone. The increased number of SSB obtained from this combined treatment may be related to the marked enhancement of carcinogenesis observed in earlier in vivo-in vitro studies.  相似文献   

11.
Natural phytochemicals are attracting increasing interest as anticancer agents. The aim of this study is to evaluate the therapeutic potential of geraniin, a major ellagitannin extracted from Geranium sibiricum L., in human glioma. Human U87 and LN229 glioma cells were treated with different concentrations of geraniin, and cell viability, apoptosis, and gene expression were assessed. The involvement of STAT3 signaling in the action of geraniin was examined. We found that geraniin treatment for 48 h significantly (P < 0.05) impaired the phosphorylation of STAT3 and reduced the expression of downstream target genes Bcl-xL, Mcl-1, Bcl-2, and cyclin D1. Exposure to geraniin led to a concentration-dependent decline in cell viability and increase in apoptosis in glioma cells, but had no significant impact on the viability of normal human astrocytes. Measurement of caspase-3 activity showed that geraniin-treated U87 and LN229 cells showed a 1.8–2.5-fold higher caspase-3 activity than control cells. Overexpression of constitutively active STAT3 significantly (P < 0.05) reversed geraniin-mediated growth suppression and apoptosis, which was accompanied by restoration of Bcl-xL, Mcl-1, Bcl-2, and cyclin D1 expression. In an xenograft tumor mouse model, geraniin treatment significantly retarded tumor growth and induced apoptosis. Western blot analysis confirmed the suppression of STAT3 phosphorylation in glioma xenograft tumors by geraniin. Taken together, these data suggest that geraniin exerts growth-suppressive and pro-apoptotic effects on glioma cells via inhibition of STAT3 signaling and may have therapeutic benefits in malignant gliomas.  相似文献   

12.
Manganese can be toxic to the heart, causing dysfunction following long exposure. In our experiments, we examined the cytotoxicity of manganese in neonatal rat ventricular myocytes (NRVM) by MTT assays in vitro. Results showed that after incubation in the different concentrations of manganese for 24 h, apparent cytotoxicity was observed. At 500, 1000, and 1500 2 microM of manganese, the percentage of cell viability dropped to 82% +/- 6.13, 78% +/- 5.28, and 66% +/- 4.22, respectively. When cells were treated for 48 h, all concentrations tested exerted toxic effect; especially from 500 to 1500 microM the cell viability dropped from 67% +/- 4.84 to 37% +/- 3.25. Apoptosis in NRVM was then examined by flow cytometry. Results showed that the percentage of apoptotic cells treated with 500 microM of manganese for 24 h increased from 4% +/- 0.84 to 7% +/- 1.16. After 48 h of incubation, this percentage increased to 11% +/- 0.91. There was no significant difference between control groups (0 microM manganese) after 24 and 48 h incubation. The morphological changes of NRVM nuclei were visualized with the fluorescent DNA-binding dye Hoechst33342 after incubation in 500 microM of manganese for 48 h. Compared with normal nuclei, apoptotic nuclei showed the typical features of fragmentation and condensation. To investigate whether there are any apoptotic gene expression changes during apoptosis, we examined the expression level of Bcl-2, Bax, and P53 mRNAs after treatment with 500 microM of manganese for 48 h. The Bcl-2 mRNA expression decreased while the expression of Bax as well as P53 mRNAs increased. These results suggested that manganese cytotoxicity on NRVM could induce apoptosis in NRVM cells. The apoptosis process might involve, and be promoted by, the changes of the expression levels of P53, Bcl-2, and Bax proteins.  相似文献   

13.
14.
The glitazones or thiazolidinediones are ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma). The glitazones are used in the treatment of diabetes, regulate adipogenesis, inflammation, cell proliferation, and induce apoptosis in several cancer cell types. High grade astrocytomas are rapidly growing tumors derived from astrocytes, for which new treatments are needed. We determined the effects of two glitazones, ciglitazone and the therapeutic rosiglitazone, on the survival of serum-deprived primary rat astrocytes and glioma cell lines C6 and U251, which were assessed by the methylthiazolyl tetrazolium assay and lactate dehydrogenase release. Rosiglitazone (5-20 microM) decreased survival of glioma cells without affecting primary astrocytes, whereas ciglitazone at 20 microM was toxic for both cell types. Ciglitazone at 10 microM was cytoprotective for primary astrocytes but toxic to glioma cells. Cell death induced by ciglitazone, but not rosiglitazone, presented apoptotic features (Hoechst staining and externalization of phosphatidylserine). Two mechanisms to explain cytotoxicity were investigated: activation of PPARgamma and production of reactive oxygen species (ROS). PPARgamma does not seem to be the main mechanism involved, because the order of efficacy for cytotoxicity, ciglitazone > rosiglitazone, was inverse of their reported affinities for activating PPARgamma. In addition, GW9662, an inhibitor of PPARgamma, only slightly attenuated cytotoxicity. However, the rapid increase in ROS production and the marked reduction of cell death with the antioxidants ebselen and N-acetylcysteine, indicate that ROS have a key role in glitazone cytotoxicity. Ciglitazone caused a dose-dependent and rapid loss (in minutes) of mitochondrial membrane potential in glioma cells. Therefore, mitochondria are a likely source of ROS and early targets of glitazone cytotoxicity. Our results highlight the potential of rosiglitazone and related compounds for the treatment of astrogliomas.  相似文献   

15.
The present study was designed to evaluate the apoptotic efficacy of selenium (Se) under glutathione-deprived conditions. Testicular cells were used as a model to assess the above. For the study, cells were maintained for 4 h under various treatments; control (media only), selenium (0.5 microM and 1.5 microM), BSO (20 nM), selenium + BSO (0.5 microM Se + 20 nM BSO and 1.5 microM Se + 20 nM BSO). The treated cells were harvested for various estimations viz. viability, GSH, GSSG, redox ratio, ROS generation and integrity of DNA. mRNA was extracted for RT-PCR analysis of JNK, p38, caspase 3 and Bcl-2. It was observed that the cell viability decreased concomitant with the decrease in GSH levels, increase in GSSG levels and increase in the generation of ROS in the combined treatment group in comparison to control and individual treatments. Also, there was an increase in the mRNA expression of JNK and p38 MAPK along with an increase in caspase 3 expression and decrease in Bcl-2 expression. The integrity of DNA was also found to be altered in the combined treatment. Thus, the results presented in this work agree with those earlier reports in a notion that sodium selenite causes apoptosis and the toxicity of selenite is mediated by increase of intracellular ROS. Also, reduction in endogenous GSH along with selenite treatment is associated with increased apoptosis, increased expression of p38 and JNK MAPK, decreased Bcl-2 expression, and increase in caspase-3 expression. Our data indicates that GSH participates in apoptosis in testicular cells and that depletion of this molecule may be critical in predisposing these cells to apoptotic cell death.  相似文献   

16.
The proteasome is a multi-subunit protease complex that is involved in intracellular protein degradation in eukaryotes. Previously, we have reported that selective, synthetic chymotryptic proteasome inhibitors inhibit A-NK cell-mediated cytotoxicity by approximately 50%; however, the exact role of the proteasome in NK cell-mediated cytotoxicity remains unknown. Herein, we report that proteasome inhibitors, MG115 and MG132, decreased the proteasome chymotrypsin-like activity in the rat natural killer cell line RNK16 by 85% at a concentration of 5 microM. The viability of RNK16 cells was also reduced in the presence of these inhibitors. Both inhibitors induced the apoptosis of RNK16 cells, as shown by DNA fragmentation, caspase-3 activation and the appearance of sub-G-cell populations. An increase in the fraction of apoptotic cells was observed in a dose- and time-dependent manner in our studies. In addition, the activity of caspase-1, -2, -6, -7, -8, and -9, was increased following the treatment of RNK16 cells with these inhibitors. Further investigation revealed that the expression of Fas (CD95) protein on the RNK16 cell surface was increased after the treatment by MG115 or MG132, indicating that apoptosis induced by proteasome inhibitors in RNK16 cells might be mediated through the Fas (CD95)-mediated death pathway as well. Our studies indicate, for the first time, that proteasomal chymotryptic inhibitors can reduce natural killer cell viability and therefore indirectly inhibit cell-mediated cytotoxicity via the apoptosis-inducing properties of these agents.  相似文献   

17.
We previously reported the association of HSPA1A and HSPB1 with high-grade astrocytomas, suggesting that these proteins might be involved in disease outcome and response to treatment. With the aim to better understand the resistance/susceptibility processes associated to temozolomide (TMZ) treatment, the current study was performed in three human malignant glioma cell lines by focusing on several levels: (a) apoptotic index and senescence, (b) DNA damage, and (c) interaction of HSPB1 with players of the DNA damage response. Three human glioma cell lines, Gli36, U87, and DBTRG, were treated with TMZ evaluating cell viability and survival, apoptosis, senescence, and comets (comet assay). The expression of HSPA (HSPA1A and HSPA8), HSPB1, O6-methylguanine-DNA methyltransferase (MGMT), MLH1, and MSH2 was determined by immunocytochemistry, immunofluorescence, and Western blot. Immunoprecipitation was used to analyze protein interaction. The cell lines exhibited differences in viability, apoptosis, and senescence after TMZ administration. We then focused on Gli36 cells (relatively unstudied) which showed very low recovery capacity following TMZ treatment, and this was related to high DNA damage levels; however, the cells maintained their viability. In these cells, MGMT, MSH2, HSPA, and HSPB1 levels increased significantly after TMZ administration. In addition, MSH2 and HSPB1 proteins appeared co-localized by confocal microscopy. This co-localization increased after TMZ treatment, and in immunoprecipitation analysis, MSH2 and HSPB1 appeared interacting. In contrast, HSPB1 did not interact with MGMT. We show in glioma cells the biological effects of TMZ and how this drug affects the expression levels of heat shock proteins (HSPs), MGMT, MSH2, and MLH1. In Gli36 cells, the results suggest that interactions between HSPB1 and MSH2, including co-nuclear localization, may be important in determining cell sensitivity to TMZ.  相似文献   

18.
Epithelial (CHSE-214), fibroblast (RTG-2) and macrophage (RTS11) cell lines from Chinook salmon and rainbow trout were tested for their sensitivity to gliotoxin, a fungal metabolite. Gliotoxin treatment for 6 or 24 h caused cell viability to decrease in a dose-dependent manner, with effective concentrations (EC50s) being similar for the three cell lines but varying with exposure time. Under some exposure conditions, hallmarks of apoptosis were detected. Apoptosis was evaluated by the appearance of fragmented nuclei upon H33258 staining and of genomic DNA laddering into 180 bp oligomers. Gliotoxin induced cell detachment in RTG-2 and CHSE-214 cultures, under some conditions. These were the only cultures of these two cell lines in which apoptosis was detected, and apoptotic cells appeared more frequent in the detached population. At the highest concentration, 15 microM, the cells died by an alternative mode, likely necrosis. By contrast, in RTS11 cultures cell detachment was not observed, and apoptosis occurred over a wider concentration range, even 15 microM, reaching levels of over 90%. The preferential death by necrosis for epithelial cells (CHSE-214) and by apoptosis for macrophages (RTS11) could be a beneficial host response to gliotoxin-producing fungi, leading respectively to the development and then resolution of inflammation.  相似文献   

19.
Bisphenol A induces apoptosis and G2-to-M arrest of ovarian granulosa cells   总被引:10,自引:0,他引:10  
We investigated the impact of bisphenol A (BPA) on murine ovarian granulosa cells. Ovarian granulosa cells were cultured with 100 fM to 100 microM BPA for 24 h to 72 h. BPA decreased granulosa cell viability in a dose- and time-dependent manner. The lowest concentration that induced a significant decrease was 100 pM (89.2 +/- 4.0% of the control). TUNEL analysis demonstrated that treatment with BPA increased apoptosis of granulosa cells in a dose- and time-dependent manner. In addition, flow cytometry analyses revealed that treatment with BPA resulted in G2-to-M arrest, which was most prominent at 48 h. BPA increased the expression of Bax and concomitantly decreased the expression of Bcl2 at both protein and mRNA levels of granulosa cells. These findings suggest that low, presumably environmentally relevant doses of BPA, decrease the viability of granulosa cells by inducing apoptosis and G2-to-M arrest. Up-regulation of Bax and down-regulation of Bcl2 were suggested to be involved in this apoptotic effect.  相似文献   

20.
beta-Amyloid protein (Abeta), a major protein component of brain senile plaques in Alzheimer's disease, is known to be directly responsible for the production of reactive oxygen species (ROS) and induction of apoptosis. In this study, the protective effect of puerarin, an isoflavone purified from the radix of the Chinese herb Pueraria lobata, on Abeta-induced rat pheochromocytoma (PC12) cultures was investigated. Although exposure of PC12 cells to 50 microM Abeta25-35 caused significant viability loss and apoptotic rate increase, pretreatment of the cells with puerarin for 24h reduced the viability loss and apoptotic rate. Puerarin (1 microM) significantly inhibited Abeta25-35-induced apoptosis of PC12 cells. Preincubation of the cell with puerarin also restored the ROS and mitochondrial membrane potential levels that had been altered as a result of Abeta25-35 treatment. Puerarin was also found to increase the Bcl-2/Bax ratio and reduce caspase-3 activation. These results suggest that puerarin could attenuate Abeta25-35-induced PC12 cell injure and apoptosis and could also promote the survival of PC12 cells. Therefore, puerarin may act as an intracellular ROS scavenger, and its antioxidant properties may protect against Abeta25-35-induced cell injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号