首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceratocystis ulmi, the causal agent of Dutch Elm Disease, produces phytotoxic glycopeptides in culture. A mixture of phytotoxic glycopeptides has been prepared by affinity chromatography on a concanavalin A-Sepharose column and collectively they have been termed the toxin. The polydisperse component that makes up the majority of the toxin (80%) by weight has a molecular weight of about 2.7·105. The large molecular weight component (<5%) elutes at the void volume of a Bio-Gel A50 m column. The other component (15%) appears as a trailing peak on the edge of the major component and has an approximate molecular weight of 7 · 104. The toxin is composed of 38% sugar residues, primarily rhamnose and mannose, and 7% amino acid residues. Methylation analysis coupled with mild acid hydrolysis indicates that the backbone of the polysaccharide portion of the toxin is composed of α-1,6-linked mannosyl residues with a 3-linked terminal rhamnosyl residue linked to C-3 of almost every mannosyl residue. The carbohydrate portion of the molecule is linked to the peptide via O-glycosidic linkages to both threonyl and seryl residues. All three components of the toxin are capable of causing wilt in stem cuttings of American elm.  相似文献   

2.
Group 1B human pancreatic secretory phospholipase A2 (hp-sPLA2), a digestive enzyme synthesized by pancreatic acinar cells and present in pancreatic juice, do not have antibacterial activity towards Escherichia coli. Our earlier results suggest that the N-terminal first ten amino acid residues of hp-sPLA2 constitute major portion of the membrane binding domain of full-length enzyme and is responsible for the precise orientation of enzyme on the membrane surface by inserting into the lipid bilayers (Pande et al. (2006) Biochemistry, 45,12436–12447). In this study we report the antibacterial properties of a peptide (AVWQFRKMIK-CONH2; N10 peptide), which corresponds to the N-terminal first ten amino acid residues of hp-sPLA2, against E. coli. Full-length hp-sPLA2, which contains this peptide sequence as N-terminal α-helix, did not showed detectable antibacterial activity. Presence of physiological concentration of salt or preincubation of N10 peptide with soluble anionic polymer inhibits the antibacterial activity indicating the importance of electrostatic interaction in binding of peptide to bacterial membrane. Addition of peptide resulted in destabilization of outer as well as inner cytoplasmic membrane of E. coli suggesting bacterial membranes to be the main target of action. N10 peptide exhibits strong synergism with lysozyme and potentiates the antibacterial activity of lysozyme. The peptide was inactive against human erythrocyte. Our result shows for the first time that a peptide fragment of hp-sPLA2 possesses antibacterial activity towards E. coli and at subinhibitory concentration and can potentiate the antibacterial activity of membrane active enzyme. These observations suggest that N10 peptide may play an important role in the antimicrobial activity of pancreatic juice.  相似文献   

3.
A trypsin was purified from the hepatopancreas of snakehead (Channa argus) by ammonium sulfate fractionation and a series of column chromatographies including DEAE-Sepharose, Sephacryl S-200 HR and Hi-Trap Capto-Q. The molecular mass of the purified trypsin was about 22 kDa, as estimated by SDS-PAGE. The optimum pH and temperature of the purified trypsin were 9.0 and 40 °C, respectively. The trypsin was stable in the pH range of 7.5-9.5 and below 45 °C. The enzymatic activity was strongly inhibited by serine proteinase inhibitors, such as MBTI, Pefabloc SC, PMSF, LBTI and benzamidine. Peptide mass fingerprinting (PMF) of the purified protein obtained 2 peptide fragments with 25 amino acid residues and were 100% identical to the trypsinogen from pufferfish (Takifugu rubripes). The activation energy (Ea) of this enzyme was 24.65 kJ·M− 1. Apparent Km was 1.02 μM and kcat was 148 S− 1 for fluorogenic substrate Boc-Phe-Ser-Arg-MCA. A trypsinogen gene encoding 247 amino acid residues was further cloned on the basis of the sequence obtained from PMF and the conserved site peptide of trypsinogen together with 5′-RACE and 3′-RACE. The deduced amino acid sequence contains a signal peptide of 15 residues and an activation peptide of 9 amino acid residues with a mature protein of 223 residues. The catalytic triad His-64, Asp-107, Ser-201 and 12 Cys residues which may form 6 disulfide bonds were conserved. Compared with the PMF data, only 2 amino acid residues difference were identified, suggesting the cloned trypsinogen is quite possibly the precursor of the purified trypsin.  相似文献   

4.
Maurotoxin (MTX) is a 34‐residue toxin that was isolated initially from the venom of the scorpion Scorpio maurus palmatus. Unlike the other toxins of the α‐KTx6 family (Pi1, Pi4, Pi7, and HsTx1), MTX exhibits a unique disulfide bridge organization of the type C1? C5, C2? C6, C3? C4, and C7? C8 (instead of the conventional C1? C5, C2? C6, C3? C7, and C4? C8, herein referred to as Pi1‐like) that does not prevent its folding along the classic α/β scaffold of scorpion toxins. MTXPi1 is an MTX variant with a conventional pattern of disulfide bridging without any primary structure alteration of the toxin. Here, using MTX and/or MTXPi1 as models, we investigated how the type of folding influences toxin recognition of the Shaker B potassium channel. Amino acid residues of MTX that were studied for Shaker B recognition were selected on the basis of their homologous position in charybdotoxin, a three disulfide‐bridged scorpion toxin also active on this channel type. These residues favored either an MTX‐ or MTXPi1‐like folding. Our data indicate clearly that Lys23 and Tyr32 (two out of ten amino acid residues studied) are the most important residues for Shaker B channel blockage by MTX. For activity on SKCa channels, the same amino acid residues also affect, directly or indirectly, the recognition of SK channels. The molecular modeling technique and computed docking indicate the existence of a correlation between the half cystine pairings of the mutated analogs and their activity on the Shaker B K+ channel. Overall, mutations in MTX could, or could not, change the reorganization of disulfide bridges of this molecule without affecting its α/β scaffold. However, changing of the peptide backbone (cross linking disulfide bridges from MTX‐like type vs MTXPi1‐like type) appears to have less impact on the molecule activity than mutation of certain key amino acids such as Lys23 and Tyr32 in this toxin. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
《FEBS letters》1998,427(1):149-151
A potassium channel toxin (AeK) was isolated from the sea anemone Actinia equina by gel filtration on Sephadex G-50 and reverse-phase HPLC on TSKgel ODS-120T. AeK and α-dendrotoxin inhibited the binding of 125I-α-dendrotoxin to rat synaptosomal membranes with IC50 of 22 and 0.34 nM, respectively, indicating that AeK is about sixty-five times less toxic than α-dendrotoxin. The complete amino acid sequence of AeK was elucidated; it is composed of 36 amino acid residues including six half-Cys residues. The determined sequence showed that AeK is analogous to the three potassium channel toxins from sea anemones (BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS from Anemonia sulcata), with an especially high sequence homology (86%) with AsKS.  相似文献   

6.
Discrepin is a scorpion peptide that blocks preferentially the IA currents of the voltage-dependent K+ channel of rat cerebellum granular cells. It was isolated from the venom of the buthid scorpion Tityus discrepans and contains 38 amino acid residues with a pyroglutamic acid at the N-terminal site. Discrepin has the lowest sequence identity (approx. 50%) among the six members of the α-KTx15 sub-family of scorpion toxins. In order to find out which residues are important for the blocking effects of Discrepin, six mutants were chemically synthesized (V6K, I19R, D20K, T35V, I19R-D20K, I19R-D20K-R21V), correctly folded and their physiological properties were examined. Substitution of residues V6 and D20 for basically charged amino acids increases the blocking activity of Discrepin, specially the mutation V6K at the N-terminal segment of the toxin. Analysis of 3D-structure models of the mutants V6K and D20K supports the idea that basic residues improve their blocking activities, similarly to what happens with BmTx3, a toxic peptide obtained from Buthus martensi scorpion, which has the highest known blocking effects of IA currents in K+ channels of rat cerebellum granular cells.  相似文献   

7.
Neb-TMOF, the trypsin modulating oostatic factor of gray fleshfly Neobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 by D-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X = NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) and D-Asn (XII). The influence of these peptides on trypsin biosynthesis in N. bullata was determined in vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [D-His)6]- and [D-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performed in vitro on heart of Tenebrio molitor we found that Neb-TMOF and [Phe(p-NH2)6-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

8.
Sea anemones synthesize a variety of toxic peptides and proteins of biological interest. The Caribbean Sea anemone Stichodactyla helianthus, produces two pore-forming toxins, Sticholysin I (St I) and Stichloysin II (St II), with the ability to form oligomeric pores in cell and lipid bilayers characteristically lacking cysteine in their amino acid sequences. Recently, two mutants of a recombinant variant of Sticholysin I (rSt I) have been obtained with a Cys residue in functionally relevant regions for the pore-forming activity of the toxin: r St I F15C (in the amino terminal sequence) and r St I R52C (in the binding site). Aiming at characterizing the effects of oxidants in toxins devoid (r St I) or containing –SH moieties (r St I F15C and r St I R52C), we measured their hemolytic activity and pore forming capacity prior and after their incubation with peroxynitrite (ONOO?). At low ONOO?/Toxin ratios, nearly 0.8 Trp groups are modified by each added peroxynitrite molecule, and the toxin activity is reduced in ca. 20 %. On the other hand, in –SH bearing mutants only 0.5 Trp groups are modified by each peroxynitrite molecule and the toxin activity is only reduced in 10 %. The results indicated that Cys is the initial target of the oxidative damage and that Trp residues in Cys-containing toxins were less damaged than those in r St I. This relative protection of Trp groups correlates with a smaller loss of hemolytic activity and permeabilization ability in liposomes and emphasizes the relevance of Trp groups in the pore forming capacity of the toxins.  相似文献   

9.
Template-based studies on antimicrobial peptide (AMP) derivatives obtained through manipulation of the amino acid sequence are helpful to identify properties or residues that are important for biological activity. The present study sheds light on the importance of specific amino acids of the milk-derived αs2-casein f(183–207) peptide to its antibacterial activity against the food-borne pathogens Listeria monocytogenes and Cronobacter sakazakii. Trimming of the peptide revealed that residues at the C-terminal end of the peptide are important for activity. Removal of the last 5 amino acids at the C-terminal end and replacement of the Arg at position 23 of the peptide sequence by an Ala residue significantly decreased activity. These findings suggest that Arg23 is very important for optimal activity of the peptide. Substitution of the also positively charged Lys residues at positions 15 and 17 of the αs2-casein f(183–207) peptide also caused a significant reduction of the effectiveness against C. sakazakii, which points toward the importance of the positive charge of the peptide for its biological activity. Indeed, simultaneous replacement of various positively charged amino acids was linked to a loss of bactericidal activity. On the other hand, replacement of Pro residues at positions 14 and 20 resulted in a significantly increased antibacterial potency, and hydrophobic end tagging of αs2-casein f(193–203) and αs2-casein f(197–207) peptides with multiple Trp or Phe residues significantly increased their potency against L. monocytogenes. Finally, the effect of pH (4.5 to 7.4), temperature (4°C to 37°C), and addition of sodium and calcium salts (1% to 3%) on the activity of the 15-amino-acid αs2-casein f(193–207) peptide was also determined, and its biological activity was shown to be completely abolished in high-saline environments.  相似文献   

10.
Using a radioimmunoassay towards bovine neurotensin (NT), chicken NT has been purified to homogeneity from extracts of intestine and its amino acid sequence determined to be: <Glu-Leu-His-Val-Asn-Lys-Ala-Arg-Arg-Pro-Tyr-Ile-Leu-OH. The molecule is identical to the bovine peptide except for the 3 amino acid substitutions located in its NH2-terminal half and italicized above (His/Tyr; Val/Glu; Ala/Pro). The structure for chicken NT is consistent with earlier immunochemical studies which indicated a COOH-terminal homology with bovine NT [1]. The peptide isolated was shown to be near equipotent with bovine NT in its ability to induce hypotension, hyperglycemia, and cyanosis in the anesthesized rat, underscoring the importance of the COOH-terminal residues in NT for biological activity.  相似文献   

11.
《Insect Biochemistry》1990,20(5):479-484
An eight residue neuropeptide (Glu-Gly-Asp-Phe-Thr-Pro-Arg-Leu-NH2) has been isolated from an extract of 9000 brain corpora cardiaca-corpora allata-suboesophageal ganglion complexes of Locusta migratoria. Biological activity was monitored during HPLC purification by observing the myotropic effect of column fractions on the isolated hindgut of Leucophaea maderae. The peptide designated as locustamyotropin II, or Lom-MT II according to Raina and Gäde (Insect Biochem.18, 785–787, 1988), has a Phe-X-Pro-Arg-Leu-NH2 carboxyl-terminal in common with the previously identified locustamyotropin I. Locustamyotropin II is also related to leucopyrokinin (Lem-PK), a blocked myotropic neuropeptide isolated from cockroach heads. Both peptides have identical carboxyterminal pentapeptide sequences. The constituent amino acids of this C-terminal are important for biological activity on the Leucophaea hindgut. Lom-MT II differs from Lem-PK in the first three aminoterminal residues. In contrast to Lem-PK and like Lom-MT I, the novel locust peptide is not N-terminally blocked. Lom-MT II has a stimulatory effect on the motility of the oviduct of Locusta but not on the hindgut.  相似文献   

12.
Peptide toxins, such as scorpion peptides, are interesting lead compounds in the search for novel drugs. In this paper, the focus is on the scorpion peptide κ-hefutoxin 1. This peptide displays a cysteine-stabilized helix-loop-helix fold (CSα/α) and is known to be a weak Kv1.x inhibitor. Due to the low affinity of κ-hefutoxin 1 for these channels, it is assumed that the main target(s) of κ-hefutoxin 1 remain(s) unknown. In order to identify novel targets, electrophysiological measurements and antifungal assays were performed. The effect of κ-hefutoxin 1 was previously evaluated on a panel of 11 different voltage-gated potassium channels. Here, we extended this target screening with the oncogenic potassium channel Kv10.1. κ-Hefutoxin 1 was able to inhibit this channel in a dose-dependent manner (IC50  26 μM). Although the affinity is rather low, this is the first peptide toxin ever described to be a Kv10.1 inhibitor. The structure-activity relationship of κ-hefutoxin 1 on Kv10.1 was investigated by testing eight κ-hefutoxin 1 variants using the two-electrode voltage clamp technique. Several important amino acid residues were identified; the functional dyad residues (Tyr5 and Lys19), N-terminal residues (Gly1 and His2) and the amidated C-terminal residue (Cys22). Since the CSα/α fold is also found in a class of antifungal plant peptides, the α-hairpinines, we investigated the antifungal activity of κ-hefutoxin 1. κ-Hefutoxin 1 showed low activity against the plant pathogen Fusarium culmorum and no activity against three other yeast and fungal species, even at high concentrations (∼100 μM).  相似文献   

13.
Phospholipase A2 (PLA2) fromBungarus multicinctus snake venom was subjected to Lys modification with 4-chloro-3,5-dinitrobenzoate and trinitrobenzene sulfonic acid, and one major carboxydinitrophenylated (CDNP) PLA2 and two trinitrophenylated (TNP) derivatives (TNP-1 and TNP-2) were separated by high-performance liquid chromatography. The results of amino acid analysis and sequence determination revealed that CDNP-PLA2 and TNP-1 contained one modified Lys residue at position 6, and both Lys-6 and Lys-62 were modified in TNP-2. It seemed that the Lys-6 was more accessible to modified reagents than other Lys residues in PLA2. Modification of Lys-6 caused a 94% drop in enzymatic activity as observed with CDNP-PLA2 and TNP-1. Alternatively, the enzyme modified on both Lys-6 and Lys-62 retained little PLA2 activity. Either carboxydinitrophenylation or trinitrophenylation did not significantly affect the secondary structure of the enzyme molecule as revealed by the CD spectra, and Ca2+ binding and antigenicity of Lys-6-modified PLA2 were unaffected. Conversion of nitro groups to amino groups resulted in a partial restoration of enzymatic activity of CDNP-PLA2 to 32% of that of PLA2. It reflected that the positively charged side chain of Lys-6 might play an exclusive role in PLA2 activity. The TNP derivatives could be regenerated with hydrazine hydrochloride. The biological activity of the regenerated PLA2 is almost the same as that of native PLA2. These results suggest that the intact Lys-6 is essential for the enzymatic activity of PLA2, and that incorporation of a bulky CDNP or TNP group on Lys-6 might give rise to a distortion of the interaction between substrate and the enzyme molecule, and the active conformation of PLA2.  相似文献   

14.
Peptide T-11, a carboxyl terminal tryptic fragment of α2-plasmin inhibitor, inhibits the reversible first step of the reaction between plasmin and α2-plasmin inhibitor. To elucidate which amino-acid residues played a important role in the inhibitory activity of peptide T-11, we prepared the various synthetic derivatives of peptide T-11 and determined the peptide concentration that inhibited the apparent rate constant of the reaction between plasmin and α2-plasmin inhibitor by 50% (IC50). Peptide III, which lacked the residues Gly-1 to Pro-7 of peptide I (peptide T-11), had a strong inhibitory activity, like peptide I (IC50: peptide 1, 7 μM; peptide III, 13 μM). The peptides that lacked the Leu-9 and Lys-10 or Lys-26 of peptide III showed much weaker activity, and the loss of amidation of the C-terminal lysine of peptide III also markedly reduced the inhibitory activity, Peptide III competitivef inhibited the binding of [14C]tranexamic acid to kringle 1 + 2 + 3 (K1–3) and kringle 4 (K4) in a binding assay performed by the gel-diffusion method. The respectively dissociation constants (Kd) of peptide III for K1–3 and K4 were 0.85 μM and 35.2 μM. These data suggest that the amino residue of Lys-10 and the carboxylic acid of Lys-26 in peptide T-11 play crucial roles in the ionic binding of α2-plasmin inhibitor to the tranexamic acid-binding site (lysine-binding site) of plasminogen. Peptide T-11: H-G-D-K-L-F-G-P-D-L-K-L-V-P-P-M-E-E-D-Y-P-Q-F-G-S-P-K-OH.  相似文献   

15.
1. Modification of potato (Solanum tuberosum) lectin with acetic anhydride blocked 5.1 amino and 2.7 tyrosyl groups per molecule of lectin and decreased the haemagglutinating activity of the lectin. De-O-acetylation regenerated 2.0 of the tyrosyl groups and resulted in a recovery of activity. 2. Modification with citraconic anhydride or cyclohexane-1,2-dione did not greatly affect activity, although modification of amino and arginyl groups could be demonstrated. 3. Treatment with tetranitromethane nitrated 3.7 tyrosine residues per molecule of lectin with concomitant loss of activity. The presence of 0.1m-NN′N″-triacetylchitotriose (a potent inhibitor of the lectin) in the reaction medium protected all the tyrosyl residues from nitration and the lectin was fully active. 4. Modification of tryptophyl groups with 2-hydroxy-5-nitrobenzyl bromide and 2,3-dioxoindoline-5-sulphonic acid modified 0.9 and 2.6 residues per molecule of lectin respectively with a loss of activity in each case. Reaction of potato lectin with 2,3-dioxoindoline-5-sulphonic acid in the presence of inhibitor protected 2.4 residues of tryptophan from the reagent. Loss of haemagglutination activity was prevented under these conditions. 5. Reaction of carboxy groups, activated with carbodi-imide, with α-aminobutyric acid methyl ester led to the incorporation of 5.3 residues of the ester per molecule of lectin. Presence of inhibitor in this case, although protecting activity, did not prevent modification of carboxy groups; in fact an increase in the number of modified residues was seen. This effect could be imitated by performing the reaction in 8m-urea. In both cases the number of carboxy groups modified was close to the total number of free carboxy groups as determined by the method of Hoare & Koshland [(1967) J. Biol. Chem. 242, 2447–2453]. Guanidination of lysine residues after carboxy-group modification gave less homoarginine than did the unmodified lectin under the same conditions, suggesting the formation of intramolecular cross-links during carbodi-imide activation. 6. It is suggested from the results presented that amino, arginyl, methionyl, histidyl and carboxyl groups are not involved in the activity of the lectin and that tyrosyl and tryptophyl groups are very closely involved. These findings are similar to those reported for other proteins that bind N-acetylglucosamine oligomers and also fit the general trend in other lectins.  相似文献   

16.
Summary Neb-TMOF, the trypsin modulating oostatic factor of gray fleshflyNeobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 byd-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X=NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) andd-Asn (XII). The influence of these peptides on trypsin biosynthesis inN. bullata was determinedin vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [d-His)6]- and [d-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performedin vitro on heart ofTenebrio molitor were found that-TMOF and [Phe(p-NH2)6]-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

17.
The T domain of diphtheria toxin, which extends from residue 202 to 378, causes the translocation of the catalytic A fragment (residues 1–201) across endosomal membranes and also forms ion-conducting channels in planar phospholipid bilayers. The carboxy terminal 57-amino acid segment (322–378) in the T domain is all that is required to form these channels, but its ability to do so is greatly augmented by the portion of the T domain upstream from this. In this work, we show that in association with channel formation by the T domain, its NH2 terminus, as well as some or all of the adjacent hydrophilic 63 amino acid segment, cross the lipid bilayer. The phenomenon that enabled us to demonstrate that the NH2-terminal region of the T domain was translocated across the membrane was the rapid closure of channels at cis negative voltages when the T domain contained a histidine tag at its NH2 terminus. The inhibition of this effect by trans nickel, and by trans streptavidin when the histidine tag sequence was biotinylated, clearly established that the histidine tag was present on the trans side of the membrane. Furthermore, the inhibition of rapid channel closure by trans trypsin, combined with mutagenesis to localize the trypsin site, indicated that some portion of the 63 amino acid NH2-terminal segment of the T domain was also translocated to the trans side of the membrane. If the NH2 terminus was forced to remain on the cis side, by streptavidin binding to the biotinylated histidine tag sequence, channel formation was severely disrupted. Thus, normal channel formation by the T domain requires that its NH2 terminus be translocated across the membrane from the cis to the trans side, even though the NH2 terminus is >100 residues removed from the channel-forming part of the molecule.  相似文献   

18.
We prepared 125I-labeled cholera toxin B subunit (125I-labeled CT-B, specific activity 98 Ci/mmol) and found that its binding to rat IEC-6 intestinal epithelial cells was high-affinity (Kd 1.9 nM). The binding of labeled protein was completely inhibited by unlabeled thymosin-α1 (TM-α1), interferon-α2 (IFN-α2), and synthetic peptide LKEKK, which corresponds to residues 16–20 in TM-α1 and 131–135 in IFN-α2 (Ki 1.2, 0.9, and 1.6 nM, respectively), but was not inhibited by synthetic peptide KKEKL with inverted amino acid sequence (Ki > 10 μM). Thus, TM-α1, IFN-α2, and the LKEKK peptide bind with high affinity and specificity to CT-B receptor on rIEC-6 cells. It was found that CT-B and the LKEKK peptide at concentrations of 10–1000 nM increased nitric oxide production and soluble guanylate cyclase activity in the cells in a dose-dependent manner.  相似文献   

19.
Solutions of native Type III collagen (chain composition, [α1(III)]3) exhibit a rapid and dramatic decrease in relative viscosity when incubated with trypsin. Cleavage products of the reaction were precipitated with ammonium sulfate and isolated in denatured form by molecular sieve chromatography. They were found to be comprised of: α1(III)-T1 (molecular weight, 71,000) derived from the NH2-terminal portion of the Type III molecule; and α1(III)-T2 (molecular weight, 24,000) from the COOH-terminal portion of the molecule. Determination of the amino acid sequence at the NH2-terminal portion of α1(III)-T2 as well as at the COOH-terminus of α(III)-T1 demonstrated that the products arose from specific cleavage of the type III molecule at an arginine-glycine bond corresponding to residues 780–781 in the repetitive triplet sequence of the α1(III) chain. The results suggest that the trypsin-susceptible bond in the native Type III collagen molecule resides in a region characterized by a relative lack of the normal collagen helicity.  相似文献   

20.
In this study, we present the spatial structure of the wheat antimicrobial peptide (AMP) Tk-AMP-X2 studied using NMR spectroscopy. This peptide was found to adopt a disulfide-stabilized α-helical hairpin fold and therefore belongs to the α-hairpinin family of plant defense peptides. Based on Tk-AMP-X2 structural similarity to cone snail and scorpion potassium channel blockers, a mutant molecule, Tk-hefu, was engineered by incorporating the functionally important residues from κ-hefutoxin 1 onto the Tk-AMP-X2 scaffold. The designed peptide contained the so-called essential dyad of amino acid residues significant for channel-blocking activity. Electrophysiological studies showed that although the parent peptide Tk-AMP-X2 did not present any activity against potassium channels, Tk-hefu blocked Kv1.3 channels with similar potency (IC50 ∼ 35 μm) to κ-hefutoxin 1 (IC50 ∼ 40 μm). We conclude that α-hairpinins are attractive in their simplicity as structural templates, which may be used for functional engineering and drug design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号