首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Enterocytozoon salmonis was transmitted to chinook salmon Oncorhynchus tshawytscha by feeding tissues infected with the parasite and by cohabitation of noninfected fish with experimentally infected fish. Affected fish (dead and survivors) in both transmission trials had gross and microscopic signs of the disease and merogonic and sporogonic stages of the parasite. There were no morbidities or mortalities, or evidence of the parasite among control fish in either study. Results suggest that the parasite may be contracted by indirect contact among healthy and infected fish held in crowded ponds or net pens or by direct ingestion of spores found in the water.  相似文献   

2.
Rainbow trout, Oncorhynchus mykiss, were infected concomitantly with Argulus coregoni and Flavobacterium columnare and their survival was compared with that of fish infected with either the parasite or the bacterium alone. The mortality of fish challenged with A. coregoni was negligible while infection with F. columnare alone led to significantly lower survival. However, compared with single infections, the mortality was significantly higher and the onset of disease condition was earlier among fish, which were concomitantly infected by A. coregoni and F. columnare. This data presents, for the first time, experimental support for the hypothesis that an ectoparasite infection increases susceptibility of fish to a bacterial pathogen.  相似文献   

3.
The effects of dexamethasone (dex) treatment on infections with the microsporidian parasite, Loma salmonae and the effects of dex on initiation of the adaptive immune response were investigated in rainbow trout, Oncorhynchus mykiss experimentally infected with the parasite. Dex treatment resulted in significantly higher infections with the parasite in the gills and other internal organs, suggesting that dex inhibits aspects of the innate immune response to L. salmonae; the heavier infections in the gills and organs of rainbow trout resembled infections seen in Chinook salmon. Mean xenoma counts per microscope field in the gills of fish infected with L. salmonae treated with dex or left untreated were 169 and 30, respectively. Although higher numbers of xenomas were observed in dex treated fish, the xenomas were generally smaller in size than in infected control fish. The xenomas in dex treated fish showed morphological signs of degeneration including loss and degeneration of early parasite stages, accumulation of amorphous material in xenomas, and infiltration with phagocytic cells containing degenerated parasites. The xenomas in infected untreated fish had larger xenomas with a more uniform size and contained identifiable parasite stages in the cytoplasm. According to this study, once fish have developed an adaptive immune response to the parasite by previous exposure, then fish have 100% protection to reinfection even when treated with heavy doses of dex. L. salmonae immune fish treated or untreated with dex during reinfection with the parasite developed no xenomas in the gills 6 weeks post reinfection. These results indicate that once the cellular response is primed to L. salmonae, then dex related immunosuppression does not reduce the effectiveness of the adaptive immune response.  相似文献   

4.
Circulation of 24 macroparasite species among 12 species of fish was evaluated within samples of hosts collected from 9 lakes on an isolated plateau in northern Alberta, Canada. Twenty-seven parasite taxa (24 species plus the larval stages of Triaenophorus crassus, T. stizostedionis, and Raphidascaris acus) had the potential to be circulated among hosts. Sixteen parasite taxa were recovered from a single host species within a lake. Of the 11 remaining nonspecialist taxa, 4 were larval stages that matured in fish or birds and 7 were adults. Eight of the 11 cases of circulation among hosts involved lake whitefish, and this host was involved in the transmission of 5 species to piscivorous fishes. Despite evidence for the circulation of 7 taxa among the 4 species of sympatric Salmonidae, 60-99% of all worms were recovered from just 1 species of host. These results indicated that approximately 60% of the parasite taxa that infected fish in these lakes were absolute host specialists. The remaining 40% of parasite taxa had restricted host ranges, with most examples of parasite circulation limited to the 2 species of sympatric coregonid.  相似文献   

5.
Nested species subsets are a common pattern in many types of communities found in insular or fragmented habitats. Nestedness occurs in some communities of ectoparasites of fish, as does the exact opposite departure from random assembly, anti-nestedness. Here, we looked for nested and anti-nested patterns in the species composition of communities of internal parasites of 23 fish populations from two localities in Finland. We also compared various community parameters of nested and anti-nested assemblages of parasites, and determined whether nestedness may result simply from a size-related accumulation of parasite species by feeding fish hosts. Nested parasite communities were characterised by higher prevalence (proportion of infected fish) and intensities of infection (number of parasites per fish) than anti-nested communities; the two types of non-random communities did not differ with respect to parasite species richness, however. In addition, the correlation between fish size and the number of parasite species harboured by individual fish was much stronger in nested assemblages than in anti-nested ones, where it was often nil. These results were shown not to be artefacts of sampling effort or host phylogeny. They apply to both assemblages of adult and larval parasites, which were treated separately. Since species of larval parasites are extremely unlikely to interact with one another in fish hosts, the establishment of nestedness appears independent of the potential action of interspecific interactions. The species composition of these parasite communities is not determined from within the community, but rather by the extrinsic influence of host feeding rates and how they amplify differences among parasite species in probabilities of colonisation or extinction. Nested patterns occur in parasite communities whose fish hosts accumulate parasites in a predictable fashion proportional to their size, whereas anti-nested communities occur in parasite communities whose fish hosts do not, possibly because of dietary specialisation preventing them from sampling the entire pool of parasite species available locally. Thus, nestedness in parasite communities may result from processes somewhat different from those generating nested patterns in free-living communities.  相似文献   

6.
The present communication reports on the attenuation of a pathogenic hemoflagellate, Cryptobia salmositica Katz (Sarcomastigophora: Kinetoplastida) and its use as a live vaccine against cryptobiosis. The parasite was attenuated by continuous in vitro culture (at 10 C for 55 wk) in minimum essential medium. Attenuated (culture) forms are morphologically similar to virulent (blood) forms. They are however more slender and have a shorter anterior flagellum and a smaller nucleus and kinetoplast. The attenuated form returned to its normal size and multiplied when inoculated into naive Oncorhynchus mykiss. It produced a low parasitemia but did not cause disease (e.g., no exophthalmia or anemia) in fish. At four wk after infection, the vaccinated fish were challenged with the virulent parasite. They were protected from the disease, whereas the control (naive) fish, infected with only the virulent parasite, had the usual clinical signs (e.g., anemia, exophthalmia). No parasite was detected in any of 10 vaccinated fish at 22 wk after challenge with the virulent parasite. However, 5 of 9 fish infected with culture forms and 6 of 9 fish infected with blood forms still had detectable parasites at 26 and 22 wk after infection, respectively.  相似文献   

7.
Three hundred and sixty-nine cod Gadus morhua were individually marked and caged for 19 months. During this period, each cod was inspected several times for Lernaeocera branchialis . Growth in four groups of cod, identified by their infection history, were compared. During the caging, 79% of the cod remained uninfected, 8·5% were infected, but lost the parasite, 8% were infected with one parasite and 4·5% were infected with more than one parasite. The infected fish either harboured the parasite at caging or were infected during the study period. The highest rate of increase, both in body mass and in standard length ( L S), was recorded in the group of male fish infected with one parasite throughout the experimental period. Conversely, those males free from infection showed significantly lower growth. The observed differences in growth could not be explained by changes in variables related to reproductive strategies. The alternative explanation for these results is that resistance to L. branchialis was associated with costs in terms of reduced growth of body mass and L S.  相似文献   

8.
In oxygen‐deficient waters, the difficulties of oxygen uptake in gill parasites and their fish hosts may influence host and parasite densities, site selection by the parasite, and effects of the parasite on host condition. This study quantified the prevalence and intensity of the gill monogenean Neodiplozoon polycotyleus in the African cyprinid fish Barbus neumayeri from an intermittent forest stream in western Uganda. Oxygen levels were low in the stream over the 12‐month study, averaging only 2.5 mg litre?1 (monthly range = 1.2–4.3 mg litre?1). However, parasite prevalence was high (47.2%), suggesting high tolerance to low oxygen in N. polycotyleus. The prevalence of parasites varied with host body size, with the highest frequency of occurrence in the middle size classes. Prevalence also varied over the year; seasonal peaks of rainfall coincided with a lower frequency of N. polycotyleus. The significantly nonrandom frequency distribution of parasites among hosts suggests regulation of parasite numbers. Of the hosts infected, 37.1% harboured one N. polycotyleus parasite, and 62.9% harboured two parasites. No fish were infected with more than two diplozoons. There was evidence for strong site specificity by N. polycotyleus within hosts; 77.7% of the parasites were located on the filaments of the second gill arch, which may relate to increased oxygen availability. In addition, only one of the 178 infected fish had more than one parasite on one side of the branchial basket. Although N. polycotyleus is undoubtedly parasitic, we found no evidence of a negative parasitic effect on the condition or reproductive status of B. neumayeri.  相似文献   

9.
We observed the behavior and ecology of Chaetodon capistratus infected and uninfected with the ectoparasitic isopod Anilocra chaetodontis to assess whether there may be parasite induced alterations in host biology, host defenses against infection, and/or pathology related to infection. We also examined habitat related differences in infection rates. Infected fish had higher rates of interaction with conspecifics and spent more time in low flow environments (which might improve transmission of juvenile parasites to new hosts). Butterfly fish without isopods were chased more frequently by damselfishes, fed more, and had larger territories. Time spent near conspecifics, and fish condition and gonadosomatic index did not vary between infected and uninfected fish. These results suggest that foureye butterfly fish behavior is altered by the isopod parasite in order for the isopods to more easily gain mates or transmit offspring to new hosts.  相似文献   

10.
Parasitism is considered a major selective force in natural host populations. Infections can decrease host condition and vigour, and potentially influence, for example, host population dynamics and behavior such as mate choice. We studied parasite infections of two common marine fish species, the sand goby (Pomatoschistus minutus) and the common goby (Pomatoschistus microps), in the brackish water Northern Baltic Sea. We were particularly interested in the occurrence of parasite taxa located in central sensory organs, such as eyes, potentially affecting fish behavior and mate choice. We found that both fish species harbored parasite communities dominated by taxa transmitted to fish through aquatic invertebrates. Infections also showed significant spatiotemporal variation. Trematodes in the eyes were very few in some locations, but infection levels were higher among females than males, suggesting differences in exposure or resistance between the sexes. To test between these hypotheses, we experimentally exposed male and female sand gobies to infection with the eye fluke Diplostomum pseudospathaceum. These trials showed that the fish became readily infected and females had higher parasite numbers, supporting higher susceptibility of females. Eye fluke infections also caused high cataract intensities among the fish in the wild. Our results demonstrate the potential of these parasites to influence host condition and visual abilities, which may have significant implications for survival and mate choice in goby populations.  相似文献   

11.
The distribution of the cestode Caryophyllaeides fennica in populations of the ide, roach, white bream and bream from the Rybinsk reservoir has been analyzed in regard to fish age. The relative abundance of C. fennica in populations of each host species was calculated as product of the helminthes abundance by the fish number in age groups. The highest prevalence and abundance of cestodes was found in the ide. All age classes of this species were infected, with the maximum in fishes of the age 3+ ... 5+. The roach is infected with C. fennica till only 10-year age; brean is infected till the age 4+. In the white bream C. fennica is an occasional parasite. The cestode number among hosts was as follows: bream--68%; roach--26%, ide--5%, white bream--1%. Different approaches to the estimation of the parasite abundance distribution among several host species (in terms of mean prevalence and intensity of the relative abundance of parasites) are discussed.  相似文献   

12.
The geographical variation in parasite community structure among populations of the same host species remains one of the least understood aspects of parasite community ecology. Why are parasite communities clearly structured in some host populations, and randomly assembled in others? Here, we address this fundamental question using data on the metazoan parasite communities of different host size-classes of four distinct populations of a small pelagic fish, the Argentine anchovy, Engraulis anchoita, from the South West Atlantic. Within each fish sample, fish length was correlated with both the total intensity of parasites and species richness among infracommunities. More importantly, average fish length correlated with mean infracommunity richness and mean total intensity across the fish samples, indicating that the characteristics of parasite assemblages in a fish population are strongly influenced by the size of its fish in relation to those in other populations. Nested subset patterns were observed in about half of the fish samples. This means that the presence or absence of parasite species among fish individuals is often not random; however, no repeatability of nestedness among component communities was observed. Average fish length did not influence directly the likelihood that a parasite assemblage was significantly nested. However, variables influenced by average fish length, namely mean infracommunity richness and mean total intensity, determine the probability that a nested hierarchy will be observed; host size may thus indirectly affect parasite community structure either itself or via its influence on host movement and feeding patterns. To some extent, this apparent link may be due to the sensitivity of nestedness analyses to the proportion of presence in a presence/absence matrix; this in itself is a biological feature of the parasite community, however, which is associated with mean host length.  相似文献   

13.
Whirling disease, caused by the parasite Myxobolus cerebralis, has infected rainbow trout (Oncorhynchus mykiss) and other salmonid fish in the western United States, often with devastating results to native populations but without a discernible spatial pattern. The parasite develops in a complex 2-host system in which the aquatic oligochaete Tubifex tubifex is an obligate host. Because substantial differences in whirling disease severity in different areas of North America did not seem explainable by environmental factors or features of the parasite or its fish host, we sought to determine whether ecological or genetic variation within oligochaete host populations may be responsible. We found large differences in compatibility between the parasite and various laboratory strains of T. tubifex that were established from geographic regions with different whirling disease histories. Moreover, 2 closely related species of tubificids, Limnodrilus hoffmeisteri and Ilyodrilus templetoni, which occur naturally in mixed species assemblages with T. tubifex, were incompatible with M. cerebralis. Virulence of the parasite was directly correlated with the numbers of triactinomyxon spores that developed within each strain of T. tubifex. Thus, the level of virulence was directly related to the compatibility between the host strain and the parasite. Genetic analyses revealed relationships that were in agreement with the level of parasite production. Differences in compatibilities between oligochaetes and M. cerebralis may contribute to the spatial variance in the severity of the disease among salmonid populations.  相似文献   

14.
An episode of parasitic enteritis causing trickling mortalities at an exhibition aquarium reproducing Mediterranean ecosystems was found to be caused by the myxozoan parasite Myxidium leei Diamant, Lom & Dykova 1994. The myxozoan was recorded in 25 different fish species belonging to 16 Genera, 10 Families and 4 Orders. It was mainly detected in the intestine of affected fish, and was responsible for severe chronic enteritis. The parasite was probably introduced into the facilities with infected wild fish, and transmitted directly from fish to fish by cohabitation, transfer of infected material and necrophagia. Fish belonging to the Families Labridae and Blenniidae appeared as most susceptible, and the incidence of infections in members of the Sparidae was low. This study significantly widens the host spectrum for this virulent parasite and now includes many ubiquitous coastal Mediterranean species. Wild fish may have a significant role in the transmission of myxidiosis of cultured sparid fish.  相似文献   

15.
Abstract Understanding genetic specificity in factors determining the outcome of host-parasite interactions is especially important as it contributes to parasite epidemiology, virulence, and maintenance of genetic variation. Such specificity, however, is still generally poorly understood. We examined genetic specificity in interactions among coinfecting parasites. In natural populations, individual hosts are often simultaneously infected by multiple parasite species and genotypes that interact. Such interactions could maintain genetic variation in parasite populations if they are genetically specific so that the relative fitness of parasite genotypes varies across host individuals depending on (1) the presence/absence of coinfections and/or (2) the genetic composition of the coinfecting parasite community. We tested these predictions using clones of fish eye flukes Diplostomum pseudospathaceum and Diplostomum gasterostei. We found that interactions among parasites had a strong genetic basis and that this modified genetic variation in infection success of D. pseudospathaceum between single and multiple infections as well as across multiply infected host individuals depending on the genetic identity of the coinfecting D. gasterostei. The relative magnitude of these effects, however, depended on the exposure dose, suggesting that ecological factors can modify genetic interactions between parasites.  相似文献   

16.
Diagnosis of myxosporean Myxobolus rotundus infection was conducted by examining skin mucus from the infected crucian carp Carassius auratus auratus with a monoclonal antibody, MAb 2D12, raised previously against the parasite. A positive reaction was observed in skin mucus collected from infected fish, and spores and pre-spore stages of the parasite were identified by the MAb 2D12. It was also demonstrated that M. rotundus infection can be successfully detected by a simple method, enzyme-linked immunosorbent assay (ELISA), and that skin mucus collected from infected fish skin had a significantly higher optical density (OD) value than that from uninfected fish.  相似文献   

17.
Atlantic salmon, Salmo salar, is normally rather refractive to infection with the ectoparasitic monogenean Gyrodactylus derjavini but dexamethasone treatment of the host increases the susceptibility. The causative mechanisms were elucidated in this work. Groups of Atlantic salmon were treated by intra-peritoneal dexamethasone injections and subsequently infected with G. derjavini. It was shown that both the infection level and the mucous cell density of caudal and pelvic fins were affected by the treatment. Significantly higher mucous cell densities were found on infected and treated fish whereas non-infected and treated fish showed no significant elevation of cell density. This suggests that mucous cell discharge elicited by infection is inhibited by the drug. The association with elevated parasite counts in these fish can be explained either by decreased anti-parasitic mucus action or by parasite predilection for intact mucous cells.  相似文献   

18.
Individuals of free-living organisms are often infected simultaneously by a community of parasites. If the co-infecting parasites interact, then this can add significantly to the diversity of host genotypexparasite genotype interactions. However, interactions between parasite species are usually not examined considering potential variation in interactions between different strain combinations of co-infecting parasites. Here, we examined the importance of interactions between strains of fish eye flukes Diplostomum spathaceum and Diplostomum gasterostei on their infectivity in naive fish hosts. We assessed the infection success of strains of both species in single-strain exposures and in co-exposures with a random strain of the other species. Parasite infection success did not consistently increase or decrease in the co-exposure treatment, but depended on the combinations of co-infecting parasite strains. This disrupted the relative infectivity of D. spathaceum strains observed in single-strain exposures. The infection success of D. gasterostei strains was independent of exposure type. These results suggest that interactions among parasite species may be strain specific and potentially promote maintenance of genetic polymorphism in parasite populations.  相似文献   

19.
Host competence, defined as the likelihood that a host will transmit infection, may be affected by an individual's resistance to infection and its ability to withstand damage caused by infection (tolerance). Host competence may therefore be one of the most important factors to impact host–parasite dynamics, yet the relationships among resistance, tolerance and competence are poorly understood. The objective of the present study was to determine whether individual host resistance (ability to resist or minimize infection) and/or tolerance (ability to withstand or minimize reduction in fitness due to infection) contributed to the competence (ability to spread infection) of hosts using guppies infected with the ectoparasite, Gyrodactylus turnbulli. This individual-fish level analysis used data collected from a previous metapopulation experiment that had tracked host–parasite dynamics at the metapopulation scale using individually marked guppies that were moved among experimental tanks within replicate metapopulations. Fish tolerance was measured as the residual from a fish's expected survival post-infection for a given parasite burden. Fish resistance was measured as the peak parasite load (– log-transformed). Host competence was measured as the incidence (number of new infections over two days after the arrival of a fish to a tank) weighted by the density of available uninfected fish in the tank. In contrast to the assumption of a trade-off between resistance and tolerance, individual fish tolerance and resistance were both negatively associated with competence. Connectivity (the number of fish with which an individual came into contact) was not associated with competence. Our results indicate that resistance and tolerance are both important to disease spread. These findings highlight the importance of understanding how individual defence against parasites may contribute to its competence as a host, and therefore impact metapopulation-level dynamics.  相似文献   

20.
Atlantic salmon Salmo salar are often heavily infected by the gill maggot Salmincola salmoneus, but little information exists on the population dynamics of this parasite. Through a combination of in vivo field examination and laboratory analysis of gills from the Alta River S. salar population in northern Norway, we describe the population dynamics of the parasite and suggest a model for the host-parasite interactions. S. salar did not become infected with S. salmoneus until they returned to the river as first-time spawners. The infection increased rapidly until autumn, and just after spawning 96% of the spent fish (kelts) were infected with a mean intensity of 53 parasites per fish. In May, the prevalence of S. salmoneus on the descending kelts had increased to 100%, but the intensity exhibited little change. A small proportion of the adult S. salar population returned as immature to the river during autumn and had lower parasite intensities than the kelts the following spring. When the fish that had spawned previously (repeat spawners) returned from their second (or more) sea migration, they had an average infection rate of 36 S. salmoneus individuals per fish. The kelts seemed to be the main habitat for the parasite during winter and spring, and they stay long enough in the river to pass the infection to maiden S. salar that enter the river early in summer. These fish then became a source of infection for the maiden fish entering the river later. However, in years that have a possible mismatch between the opposite migration of kelts and maiden S. salar, the immature fall-running and returning repeat spawners will be crucial for maintaining the parasite population. We hypothesize that heavily infected S. salar may suffer reduced growth and survival at sea, potentially reducing the abundance of repeat spawners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号