首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decade has seen many exciting technological breakthroughs that greatly expanded the toolboxes for biological and biomedical research, yet few have had more impact than induced pluripotent stem cells and modern-day genome editing. These technologies are providing unprecedented opportunities to improve physiological relevance of experimental models, further our understanding of developmental processes, and develop novel therapies. One of the research areas that benefit greatly from these technological advances is the three-dimensional human organoid culture systems that resemble human tissues morphologically and physiologically. Here we summarize the development of human pluripotent stem cells and their differentiation through organoid formation. We further discuss how genetic modifications, genome editing in particular, were applied to answer basic biological and biomedical questions using organoid cultures of both somatic and pluripotent stem cell origins. Finally, we discuss the potential challenges of applying human pluripotent stem cell and organoid technologies for safety and efficiency evaluation of emerging genome editing tools.  相似文献   

2.
合成生物学旨在建立一套完整的工程理论和方法,通过设计和组装基本生物学元件,更为有效地实现复杂生物系统的设计,并使其完成可编程的生物学功能。近年来随着可编程基因组元件的出现,特别是CRISPR和CRISPRi技术平台的建立和完善,使得合成生物学进入了一个全新发展的时期。本文重点综述CRISPR等基因组编辑和调控技术,其在构建可编程生物学元件和复杂基因线路的应用以及合成生物学在医学中(称为医学合成生物学)的发展前景。  相似文献   

3.
基因合成技术研究进展   总被引:1,自引:0,他引:1  
冯淼  王璐  田敬东 《生物工程学报》2013,29(8):1075-1085
基因合成是生物学中一项最基本的、最常用的技术.对DNA调控元件、基因、途径乃至整个基因组的合成是验证生物学假设和利用生物学为人类服务的有力工具.合成生物学的快速发展对基因合成能力提出了日益迫切的需求.近年来,基于微芯片基因合成技术取得了很多令人振奋的新进展,正在向着高通量、高保真、自动化的方向发展.文中综述了DNA化学合成和基因组装及相关技术的最新研究进展和发展趋势,这些新技术正在推动着合成生物学向着更高的水平发展.  相似文献   

4.
Omics and bioinformatics are essential to understanding the molecular systems that underlie various plant functions. Recent game-changing sequencing technologies have revitalized sequencing approaches in genomics and have produced opportunities for various emerging analytical applications. Driven by technological advances, several new omics layers such as the interactome, epigenome and hormonome have emerged. Furthermore, in several plant species, the development of omics resources has progressed to address particular biological properties of individual species. Integration of knowledge from omics-based research is an emerging issue as researchers seek to identify significance, gain biological insights and promote translational research. From these perspectives, we provide this review of the emerging aspects of plant systems research based on omics and bioinformatics analyses together with their associated resources and technological advances.  相似文献   

5.
The requirements for bioinformatics resources to support genome research in farm animals is reviewed.The resources developed to meet these needs are described. Resource databases and associated tools have been developed to handle experimental data. Several of these systems serve the needs of multinational collaborations. Genome databases have been established to provide contemporary summaries of the status of genome maps in a range of farm and domestic animals along with experimental details and citations. New resources and tools will be required to address the informatics needs of emerging technologies such as microarrays. However, continued investment is also required to maintain the currency and utility of the current systems, especially the genome databases.  相似文献   

6.
The use of high-throughput DNA sequencing and proteomic methods has led to an unprecedented increase in the amount of genomic and proteomic data. Application of computing technologies and development of computational tools to analyze and present these data has not kept pace with the accumulation of information. Here, we discuss the use of different database systems to store biological information and mention some of the key emerging computing technologies that are likely to have a key role in the future of bioinformatics.  相似文献   

7.
The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO2, and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop “design rules” for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems.  相似文献   

8.
Proteomics: a technology-driven and technology-limited discovery science   总被引:9,自引:0,他引:9  
An emerging field for the analysis of biological systems is the study of the complete protein complement of the genome, the 'proteome'. There are several complementary tools available for proteome analysis including 2D protein electrophoresis and mass spectrometry. Emerging technologies for proteome analysis include spotted-array-based methods and microfluidic devices. Taken together, these technologies provide a wealth of information that is useful in discovery-based science. However, there are some key limitations of these approaches and new technology is required to be able to fully integrate proteomic information with information obtained about DNA sequence, mRNA profiles and metabolite concentrations into effective models of biological systems.  相似文献   

9.
10.
This review describes recent work in cell separation using micro- and nanoscale technologies. These devices offer several advantages over conventional, macroscale separation systems in terms of sample volumes, low cost, portability, and potential for integration with other analytical techniques. More importantly, and in the context of modern medicine, these technologies provide tools for point-of-care diagnostics, drug discovery, and chemical or biological agent detection. This review describes work in five broad categories of cell separation based on (1) size, (2) magnetic attraction, (3) fluorescence, (4) adhesion to surfaces, and (5) new emerging technologies. The examples in each category were selected to illustrate separation principles and technical solutions as well as challenges facing this rapidly emerging field.  相似文献   

11.
The use of complex biological molecules to solve computational problems is an emerging field at the interface between biology and computer science. There are two main categories in which biological molecules, especially DNA, are investigated as alternatives to silicon-based computer technologies. One is to use DNA as a storage medium, and the other is to use DNA for computing. Both strategies come with certain constraints. In the current study, we present a novel approach derived from chaos game representation for DNA to generate DNA code words that fulfill user-defined constraints, namely GC content, homopolymers, and undesired motifs, and thus, can be used to build codes for reliable DNA storage systems.  相似文献   

12.
合成生物学作为一门新兴学科,其目标主要有两点:一是利用非天然的分子使其出现生命的现象,也就是―人造生命‖;二是―改造生命‖,比如利用一种生命体的元件(或经过人工改造),组装到另一个生命体中,使其产生特定功能。无论是哪种目的,对生命遗传物质DNA的操作都非常关键,其具体包括DNA的从头合成、组装和编辑等。同时,这些使能技术的进步也促进了合成生物学其他领域的发展。本文介绍了DNA操作相关的合成生物学使能技术的最新进展。  相似文献   

13.
The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.  相似文献   

14.
Multiprotein complexes catalyze vital biological functions in the cell. A paramount objective of the SPINE2 project was to address the structural molecular biology of these multiprotein complexes, by enlisting and developing enabling technologies for their study. An emerging key prerequisite for studying complex biological specimens is their recombinant overproduction. Novel reagents and streamlined protocols for rapidly assembling co-expression constructs for this purpose have been designed and validated. The high-throughput pipeline implemented at IGBMC Strasbourg and the ACEMBL platform at the EMBL Grenoble utilize recombinant overexpression systems for heterologous expression of proteins and their complexes. Extension of the ACEMBL platform technology to include eukaryotic hosts such as insect and mammalian cells has been achieved. Efficient production of large multicomponent protein complexes for structural studies using the baculovirus/insect cell system can be hampered by a stoichiometric imbalance of the subunits produced. A polyprotein strategy has been developed to overcome this bottleneck and has been successfully implemented in our MultiBac baculovirus expression system for producing multiprotein complexes.  相似文献   

15.
Chemical-genomic (CG) profiling of bioactive compounds is a powerful approach for drug target identification and mode of action studies. Within the last decade, research focused largely on the development and application of CG approaches in the model yeast Saccharomyces cerevisiae. The success of these methods has sparked interest in transitioning CG profiling to other biological systems to extend clinical and evolutionary relevance. Additionally, CG profiling has proven to enhance drug-synergy screens for developing combinatorial therapies. Herein, we briefly review CG profiling, focusing on emerging cross-species technologies and novel drug-synergy applications, as well as outlining needs within the field.  相似文献   

16.
Genome‐modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre‐defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome‐scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.  相似文献   

17.
Compartmentalization is essential in the organization of biological systems, playing a fundamental role in modulating biochemical activity. An appreciation of the impact that biological compartments have on chemical reactions and an understanding of the physical and chemical phenomena that affect their assembly and function have inspired the development of synthetic compartments. Organic compartments assembled from amphiphilic molecules or derived from biological materials, have formed the basis of initial work in the field. However, inorganic and hybrid organic-inorganic compartments that capitalize on the optical and catalytic properties of metal and semiconductor materials are emerging. Methods for arraying these microcompartment and nanocompartment materials in higher order systems promise to enable the scaling and integration of these technologies for industrial and commercial applications.  相似文献   

18.
The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of “lab-on-a-chip” methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research.  相似文献   

19.
Although theoretical systems analysis has been available for over half a century, the recent advent of omic high-throughput analytical platforms along with the integration of individual tools and technologies has given rise to the field of modern systems biology. Coupled with information technology, bioinformatics, knowledge management and powerful mathematical models, systems biology has opened up new vistas in our understanding of complex biological systems. Currently there are two distinct approaches that include the inductively driven computational systems biology (bottom-up approach) and the deductive data-driven top-down analysis. Such approaches offer enormous potential in the elucidation of disease as well as defining key pathways and networks involved in optimal human health and nutrition. The tools and technologies now available in systems biology analyses offer exciting opportunities to develop the emerging areas of personalized medicine and individual nutritional profiling.  相似文献   

20.
Synthetic biology employs rational engineering principles to build biological systems from the libraries of standard, well characterized biological parts. Biological systems designed and built by synthetic biologists fulfill a plethora of useful purposes, ranging from better healthcare and energy production to biomanufacturing. Recent advancements in the synthesis, assembly and “booting-up” of synthetic genomes and in low and high-throughput genome engineering have paved the way for engineering on the genome-wide scale. One of the key goals of genome engineering is the construction of minimal genomes consisting solely of essential genes (genes indispensable for survival of living organisms). Besides serving as a toolbox to understand the universal principles of life, the cell encoded by minimal genome could be used to build a stringently controlled “cell factory” with a desired phenotype. This review provides an update on recent advances in the genome-scale engineering with particular emphasis on the engineering of minimal genomes. Furthermore, it presents an ongoing discussion to the scientific community for better suitability of minimal or robust cells for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号