首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary According to the conventional carrier model, an inhibitor bound at the substrate transfer site inhibits competitively when on the same side of the membrane as the substrate, but noncompetitively when on the opposite side. This prediction was tested with the nonpenetrating choline analog dimethyl-n-pentyl (2-hydroxyethyl) ammonium ion. In zerotrans entry and infinitetrans entry experiments, where the labeled substrate and the inhibitor occupy the same compartment, the inhibition was competitive, but in zerotrans exit it was noncompetitive, in accord with the model. Similar behavior was seen with dimethyl-n-decyl (2-hydroxyethyl) ammonium ion. With this property of the choline transport system established, it becomes possible to estimate the relative affinity inside and outside of inhibitors present on both sides of the membrane. The tertiary amine, dibutylaminoethanol, which enters the cell by simple diffusion, is such an inhibitor. Here the inhibition kinetics were the reverse of those for nonpenetrating inhibitors; zerotrans and infinitetrans exit was inhibited competitively, and zerotrans entry noncompetitively. It follows that dibutylaminoethanol binds predominantly to the inner carrier form.  相似文献   

2.
Summary Sodium tetrathionate reacts with the glucose carrier of human erythrocytes at a rate which is greatly altered in the presence of competitive inhibitors of glucose transport. Inhibitors bound to the carrier on the outer surface of the membrane, either at the substrate site (maltose) or at the external inhibition site (phloretin and phlorizin), more than double the reaction rate. Inhibitors bound at the internal inhibition site (cytochalasin B and androstenedione), protect the system against tetrathionate. After treatment with tetrathionate, the maximum transport rate falls to less than one-third, and the properties of the binding sites are modified in unexpected ways. The affinity of externally bound inhibitors rises: phloretin is bound up to seven times more strongly and phlorizin and maltose twice as strongly. The affinity of cytochalasin B, bound at the internal inhibition site, falls to half while that of androstenedione is little changed. The affinity of external glucose falls slightly. Androstenedione prevents both the fall in transport activity and the increase in phloretin affinity produced by tetrathionate. An inhibitor of anion transport has no effect on the reaction. The observations support the following conclusions: (1) Tetrathionate produces its effects on the glucose transport system by reacting with the carrier on the outer surface of the membrane. (2) The carrier assumes distinct inward-facing and outward-facing conformations, and tetrathionate reacts with only the outward-facing form. (3) The thiol group with which tetrathionate is presumed to react is not present in either the substrate site or the internal or external inhibitor site. (4) In binding asymmetrically to the carrier, a reversible inhibitor shifts the carrier partition between inner and outer forms and thereby raises or lowers the rate of tetrathionate reaction with the system. (5) Reaction with tetrathionate converts the carrier to an altered state in which the conformation at all three binding sites is changed and the rate of carrier reorientation is reduced.  相似文献   

3.
This study examines inhibitions of human erythrocyte D-glucose uptake at ice temperature produced by maltose and cytochalasin B. Maltose inhibits sugar uptake by binding at or close to the sugar influx site. Maltose is thus a competitive inhibitor of sugar uptake. Cytochalasin B inhibits sugar transport by binding at or close to the sugar efflux site and thus acts as a noncompetitive inhibitor of sugar uptake. When maltose is present in the uptake medium, Ki(app) for cytochalasin B inhibition of sugar uptake increases in a hyperbolic manner with increasing maltose. When cytochalasin B is present in the uptake medium, Ki(app) for maltose inhibition of sugar uptake increases in a hyperbolic manner with increasing cytochalasin B. High concentrations of cytochalasin B do not reverse the competitive inhibition of D-glucose uptake by maltose. These data demonstrate that maltose and cytochalasin B binding sites coexist within the glucose transporter. These results are inconsistent with the simple, alternating conformer carrier model in which maltose and cytochalasin B binding sites correspond to sugar influx and sugar efflux sites, respectively. The data are also incompatible with a modified alternating conformer carrier model in which the cytochalasin B binding site overlaps with but does not correspond to the sugar efflux site. We show that a glucose transport mechanism in which sugar influx and sugar efflux sites exist simultaneously is consistent with these observations.  相似文献   

4.
Cytochalasin B inhibits glucose transport in human erythrocytes by competing with glucose for the carrier on the inner surface of the cell membrane, but there is no cytochalasin site associated with the outware-facing form of the carrier. Such asymmetry may be demonstrated by zero trans exit and entry experiments, whereas Sen-Widdas exit experiments are not easily interpretable. The orientation of the transport system appears to be reversed in certain other cell types: chich embryo fibroblasts, Novikoff hepatoma cells and HeLa cells. Here the cytochalasin site is present in the external but not internal carrier form.  相似文献   

5.
Cytochalasin B inhibits glucose transport in human erythrocytes by competing with glucose for the carrier on the inner surface of the cell membrane, but there is no cytochalasin site associated with the outward-facing form of the carrier. Such asymmetry may be demonstrated by zero trans exit and entry experiments, whereas Sen-Widdas exit experiments are not easily interpretable. The orientation of the transport system appears to be reversed in certain other cell types: chick embryo fibroblasts, Novikoff hepatoma cells and HeLa cells. Here the cytochalasin site is present in the external but not internal carrier form.  相似文献   

6.
Effect of inhibitors on glucose transport in malaria (Plasmodium berghei) infected erythrocytes. International Journal for Parasitology16: 441–446. The effect of cytochalasin B and phloretin on transport of d-glucose and 2-deoxy-d-glucose into Plasmodium berghei-infected mouse erythrocytes was studied. Both the inhibitor-sensitive and insensitive fractions of transport in the infected erythrocytes were increased compared with normal erythrocytes. The i50 values (concentrations of inhibitor producing 50% inhibition) were similar for both infected and normal erythrocytes, indicating that the binding affinities of the carrier were not substantially changed, but the turnover number, availability, or the number of the carrier may have increased in infection. There was a large increase in the transport of l-glucose into infected erythrocytes. Neither inhibitor showed any effect on transport of l-glucose into infected or normal erythrocytes. d-Galactose and d-fructose also showed a large transport increase mostly insensitive to cytochalasin B. The specificity of the transport increase raises the possibility of the presence of a new pathway other than simple diffusion, or the carrier-mediated pathway revealed by cytochalasin B or phloretin inhibition.  相似文献   

7.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

8.
A new phloretin derivative, phloretinyl-3′-benzylazide (PBAz), has been synthesized and compared with phloretin for its ability to inhibit the hexose transporter in human erythrocyte membranes in subdued light. Transport measurements were made using the light scattering (Ørskov optical) method and a Millipore filtration technique with isotopically labeled sugars. Initial rates of sugar flux were measured under four different conditions to test for inhibition asymmetry. In each experimental condition, PBAz is from 6–20-times more potent than phloretin, making it one of the most effective reversible inhibitors known. Although both agents penetrate the cell membrane, they apparently fail to reach inhibitory levels at the inner surface over the time course of our nonequilibrated experiments, because of extensive binding to hemoglobin. The mechanism by which PBAz and its parent phloretin inhibit transport is pure competition with hexose for the carrier which faces the exterior of the membrane. If given time to equilibrate with the cells, the inhibition by both agents converts to a mixed type, i.e., both competitive and noncompetitive. The noncompetitive component could be due to inhibition of those transporter units oriented internally. Alternatively pre-equilibration with the inhibitors may cause them to attain high levels in the lipid membrane and produce nonspecific effects. PBAz and its precursor amine, phloretinyl-3′-benzylamine (PBA), compete with glucose for the sugar binding site on mutarotase at least as well as phloretin. When exposed to long wavelength ultraviolet radiation, PBAz is converted to a reactive intermediate which becomes covalently bound to the enzyme. Both irreversible ligand attachment and mutarotase inhibition are related to dose of the azide and irradiation time, but inactivation is from 5 to 6-times greater than label incorporation. We conclude that PBAz is a potentially useful photoaffinity labeling agent capable of covalently interacting with the transporter site facing the exterior of the red cell.  相似文献   

9.
The interaction of nucleosides with the glucose carrier of human erythrocytes was examined by studying the effect of nucleosides on reversible cytochalasin B-binding activity and glucose transport. Adenosine, inosine and thymidine were more potent inhibitors of cytochalasin B binding to human erythrocyte membranes than was D-glucose [IC50 (concentration causing 50% inhibition) values of 10, 24, 28 and 38 mM respectively]. Moreover, low concentrations of thymidine and adenosine inhibited D-glucose-sensitive cytochalasin B binding in an apparently competitive manner. Thymidine, a nucleoside not metabolized by human erythrocytes, inhibited glucose influx by intact cells with an IC50 value of 9 mM when preincubated with the erythrocytes. In contrast, thymidine was an order of magnitude less potent as an inhibitor of glucose influx when added simultaneously with the radioactive glucose. Consistent with this finding was the demonstration that glucose influx by inside-out vesicles prepared from human erythrocytes was more susceptible to thymidine inhibition than glucose influx by right-side-out vesicles. These data, together with previous suggestions that cytochalasin B binds to the glucose carrier at the inner face of the membrane, indicate that nucleosides are capable of inhibiting glucose-transport activity by interacting at the cytoplasmic surface of the glucose transporter. Nucleosides may also exhibit a low-affinity interaction at the extracellular face of the glucose transporter.  相似文献   

10.
Phloretin is an inhibitor of anion exchange and glucose and urea transport in human red cells. Equilibrium binding and kinetic studies indicate that phloretin binds to band 3, a major integral protein of the red cell membrane. Equilibrium phloretin binding has been found to be competitive with the binding of the anion transport inhibitor, 4,4′-dibenzamido-2,2′-disulfonic stilbene (DBDS), which binds specifically to band 3. The apparent binding (dissociation) constant of phloretin to red cell ghost band 3 in 28.5 mM citrate buffer, pH 7.4, 25°C, determined from equilibrium binding competition, is 1.8 ± 0.1 μM. Stopped-flow kinetic studies show that phloretin decreases the rate of DBDS binding to band 3 in a purely competitive manner, with an apparent phloretin inhibition constant of 1.6 ± 0.4 μM. The pH dependence of equilibrium binding studies show that it is the charged, anionic form of phloretin that competes with DBDS binding, with an apparent phloretin inhibition constant of 1.4 μM. The phloretin binding and inhibition constants determined by equilibrium binding, kinetic and pH studies are all similar to the inhibition constant of phloretin for anion exchange. These studies suggest that phloretin inhibits anion exchange in red cells by a specific interaction between phloretin and band 3.  相似文献   

11.
[3H]Cytochalasin B binding and its competitive inhibition by D-glucose have been used to identify, the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for D-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the D-glucose-inhibitable site. If 280 nM (40000 microunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of D-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

12.
Summary Phloridzin-insensitive, Na+-independentd-glucose uptake into isolated small intestinal epithelial cells was shown to be only partially inhibited by trypsin treatment (maximum 20%). In contrast, chymotrypsin almost completely abolished hexose transport. Basolateral membrane vesicles prepared from rat small intestine by a Percoll® gradient procedure showed almost identical susceptibility to treatment by these proteolytic enzymes, indicating that the vesicles are predominantly oriented outside-out. These vesicles with a known orientation were employed to investigate the kinetics of transport in both directions across the membrane. Uptake data (i.e. movement into the cell) showed aK t of 48mm and aV max of 1.14 nmol glucose/mg membrane protein/sec. Efflux data (exit from the cell) showed a lowerK t of 23mm and aV max of 0.20 nmol glucose/mg protein/sec.d-glucose uptake into these vesicles was found to be sodium independent and could be inhibited by cytochalasin B. TheK t for cytochalasin B as an inhibitor of glucose transport was 0.11 m and theK D for binding to the carrier was 0.08 m.d-glucose-sensitive binding of cytochalasin B to the membrane preparation was maximized withl- andd-glucose concentrations of 1.25m. Scatchard plots of the binding data indicated that these membranes have a binding site density of 8.3 pmol/mg membrane protein. These results indicate that the Na+-independent glucose transporter in the intestinal basolateral membrane is functionally and chemically asymmetric. There is an outward-facing chymotrypsin-sensitive site, and theK t for efflux from the cell is smaller than that for entry. These characteristics would tend to favor movement of glucose from the cell towards the bloodstream.  相似文献   

13.
Phlorizin, phloretin and cytochalasin B are known to be specific sugar transport inhibitors. A study was made of their effects on the carbohydrate-protein interaction in solution as a model system for examining the initial steps of sugar membrane transport. Glycogen precipitation by concanavalin A is inhibited only by alpha-methylmannoside, whereas both phlorizin and phloretin inhibit interactions between hexokinase and glucose, and between glucose-6-phosphate dehydrogenase and glucose-6-phosphate. Cytochalasin B was found to exert no effect on both the concanavalin A--glycogen interaction and the enzyme reactions investigated. The data obtained in the model system examination may suggest that the sites of glucose and cytochalasin binding are, respectively, spatially uncoupled.  相似文献   

14.
The ability of Ehrlich ascites tumor cells to take up glucose increased progressively during the course of tumor development. Simultaneously as the rate of uptake rose, the density of a class of glucose-reversible binding sites for cytochalasin B on the cell surface also increased. In its stereospecificity requirement toward competing sugars and in its sensitivity to phloretin and diethylstilbestrol, this class of binding sites resembled the putative glucose carriers identified in various other cell systems and may represent the glucose transporter in Ehrlich ascites cells. Work with methotrexate (MTX) substantiated this view. Methotrexate arrested tumor growth, inhibited glucose uptake, and reduced the number of cytochalasin B binding sites. In both MTX-treated and untreated cells, the magnitude of changes in number of cytochalasin B binding sites closely paralleled and sufficiently accounted for the magnitude of changes in glucose uptake. Qualitative changes in the turnover and affinity for substrate of the putative glucose carrier need not be invoked.  相似文献   

15.
Pérez A  Ojeda P  Ojeda L  Salas M  Rivas CI  Vera JC  Reyes AM 《Biochemistry》2011,50(41):8834-8845
The facilitative hexose transporter GLUT1 activity is blocked by tyrosine kinase inhibitors that include natural products such as flavones and isoflavones and synthetic compounds such as tyrphostins, molecules that are structurally unrelated to the transported substrates [Vera, et al. (2001) Biochemistry, 40, 777-790]. Here we analyzed the interaction of GLUT1 with quercetin (a flavone), genistein (an isoflavone), and tyrphostin A47 and B46 to evaluate if they share one common or have several binding sites on the protein. Kinetic assays showed that genistein, quercetin, and tyrphostin B46 behave as competitive inhibitors of equilibrium exchange and zero-trans uptake transport and noncompetitive inhibitors of net sugar exit out of human red cells, suggesting that they interact with the external surface of the GLUT1 molecule. In contrast, tyrphostin A47 was a competitive inhibitor of equilibrium exchange and zero-trans exit transport and a noncompetitive inhibitor of net sugar entry into red cells, suggesting that it interacts with the cytoplasmic surface of the transporter. Genistein protected GLUT1 against iodide-elicited fluorescence quenching and also decreased the affinity of d-glucose for its external binding site, while quercetin and tyrphostins B46 and A47 promoted fluorescence quenching and did not affect the external d-glucose binding site. These findings are explained by a carrier that presents at least three binding sites for tyrosine kinase inhibitors, in which (i) genistein interacts with the transporter in a conformation that binds glucose on the external surface (outward-facing conformation), in a site which overlaps with the external binding site for d-glucose, (ii) quercetin and tyrphostin B46 interact with the GLUT1 conformation which binds glucose by the internal side of the membrane (inward-facing conformation), but to a site accessible from the external surface of the protein, and (iii) the binding site for tyrphostin A47 is accessible from the inner surface of GLUT1 by binding to the inward-facing conformation of the transporter. These data provide groundwork for a molecular understanding of how the tyrosine kinase inhibitors directly affect glucose transport in animal cells.  相似文献   

16.
An indicator dilution technique with 22Na+ as the intravascular marker was used to measure unidirectional transport of d-[6-3H]glucose from blood into the isolated, perfused dog brain. 18 compounds which are structurally related to glucose were tested for their ability to inhibit glucose transport. The data suggest that no single hydroxyl group is absolutely required for glucose transport, but rather that glucose binding to the carrier probably occurs through hydrogen bonding at several sites (hydroxyls on carbons 1, 3, 4 and 6). In addition, α-d-glucose has higher affinity for the carrier than does β-d-glucose.A separate series of experiments demonstrated that phlorizin and phloretin are competitive inhibitors of glucose transport into brain; however, phloretin is partially competitive and inhibits at lower concentrations than does phlorizin. Inhibition by phlorizin and phloretin is mutually competitive, indicating that these compounds compete for binding to the glucose carrier. Comparison with the results reported in the literature for similar studies using the human erythrocyte demonstrates a fundamental similarity between glucose transport systems in the blood-brain barrier and erythrocyte.  相似文献   

17.
Plasma membrane vesicles isolated from nontransformed and Simian virus 40-transformed mouse fibroblast cultures catalyzed carrier-mediated D-glucose transport without detectable metabolic conversion to glucose 6-phosphate. Glucose transport activity was stereospecific, temperature-dependent, sensitive to inactivation by p-chloromercuriphenylsulfonate, and accompanied plasma membrane material during subcellular fractionation. D-Glucose efflux from vesicles was inhibited by phloretin, an inhibitor of glucose uptake in intact cells. Cytochalasin B, a potent inhibitor of glucose uptake when tested with the intact cells used for vesicle isolation did not inhibit glucose transport in vesicles despite the presence of high affinity cytochalasin binding sites in isolated membranes. The enhanced glucose uptake observed in intact cells after viral transformation was not expressed in vesicles: no significant differences in glucose transport specific activity could be detected in vesicle preparations from nontransformed and transformed mouse fibroblast cultures. These findings indicate that cellular components distinct from glucose carriers can mediate changes in glucose uptake in mouse fibroblast cultures in at least two cases: sensitivity to inhibition by cytochalasin B and the enhanced cellular sugar uptake observed after viral transformation.  相似文献   

18.
The presence of a reactive exofacial sulfhydryl on the human erythrocyte hexose carrier was used to test several predictions of the alternating conformation or one-site model of transport. The cell-impermeant glutathione-maleimide-I (GS-Mal) irreversibly inhibited hexose entry by decreasing the transport Vmax. This effect was potentiated by phloretin and maltose but decreased by cytochalasin B, indicating that under the one-site model the external sulfhydryl is on the outward-facing carrier but that it does not overlap with the exofacial substrate-binding site. Incubation of erythrocytes with maltose competitively inhibited the binding of [3H]cytochalasin B to the inward-facing carrier (Ki = 40 mM). Furthermore, both equilibrium cytochalasin B binding and its photolabeling of the band 4.5 carrier protein were decreased in ghosts prepared from GS-Mal-treated cells. Thus induction of an outward-facing carrier conformation with either maltose or GS-Mal caused the endofacial substrate-binding site to disappear. Dose-response studies of GS-Mal treatment of intact cells suggested that some functional carriers lack a reactive external sulfhydryl, which can be partially regenerated by pretreatment with excess cysteine. These data provide direct support for the one-site model of transport and further define the role of the external sulfhydryl in the transport mechanism.  相似文献   

19.
A fluorescent glucose analogue, 6-deoxy-N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-aminoglucose (NBDG), was synthesized and its interactions with the hexose transport system of the human red blood cell were investigated. NBDG entry is inhibited by increasing concentrations of d-glucose (Ki = 2 mM). However, NBDG exit is unaffected by d-glucose in red blood cells. Cytochalasin B was found to inhibit both NBDG entry and exit. NBDG accumulates in the red blood cell above the theoretical equilibrium concentration. Accumulation of NBDG is temperature-sensitive and is due to the binding of NBDG to some intracellular substance. The binding of NBDG to purified hemoglobin suggests that accumulation of NBDG by erythrocytes is due to the intracellular binding of NBDG to hemoglobin. NBDG does not accumulate in pink erythrocyte ghosts, while its rate of uptake is still inhibited by d-glucose and cytochalasin B. Although there was no apparent d-glucose inhibition of NBDG exit by intact red blood cells, d-glucose was able to inhibit NBDG exit by pink erythrocyte ghosts. The differing properties of NBDG influx and efflux support the interpretation that the hexose transport system of the human red blood cell appears asymmetric although it may be intrinsically symmetric.  相似文献   

20.
The rate but not the extent of phlorizin binding to purified fat cell plasma membranes was temperature dependent and this binding was a saturable process. A Scatchard plot revealed a population of sites which exhibited a dissociation constant of about 0.35 mM and a maximum binding capacity of about 8 nmoles/mg membrane protein. Under the conditions of these experiments neither glucose, phloretin, nor cytochalasin B inhibited [3H]phlorizin binding. These data demonstrate the presence in fat cell plasma membrane of specific receptors for phlorizin which may mediate the inhibitory effects of this agent on hexose trasport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号