首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L B Dugad  X Wang  C C Wang  G S Lukat  H M Goff 《Biochemistry》1992,31(6):1651-1655
Chloroperoxidase, a glycoprotein from the mold Caldariomyces fumago, has been investigated in its ferric low-spin cyanide-ligated form through use of nuclear Overhauser effect (NOE) spectroscopy to provide information on the heme pocket electronic/molecular structure. Spin-lattice relaxation times for the hyperfine-shifted heme resonances were found to be three times less than those in horseradish peroxidase. This must reflect a slower electronic relaxation rate for chloroperoxidase than for horseradish peroxidase as a consequence of axial ligation of cysteine in the former versus histidine in the latter enzyme. Isoenzymes A1 and A2 of chloroperoxidase show the largest chemical shift differences near the heme propionate on the basis of NOE measurements. This suggests that the primary structure differences for the two isoenzymes are communicated to the heme group through the ring propionate substituents. A downfield peak has been detected in chloroperoxidase with chemical shift, T1, and line width characteristics similar to those of the C epsilon-H proton of the distal histidine residue. The NOE pattern and T1's of the peaks in the 0.0 to -5.0 ppm upfield region are consistent with the presence of an arginine amino acid residue in the heme pocket near either the 1-CH3 or 3-CH3 group. Existence of catalytically important distal histidine and arginine amino acid residues in chloroperoxidase shows it to be structurally similar to peroxidases rather than to the often compared monooxygenase, cytochrome P-450. This result supports the earlier conclusions of Sono et al. [Sono, M., Dawson, J.H., Hall, K., & Hager, L.P. (1986) Biochemistry 25, 347-356].  相似文献   

2.
Chloroperoxidase from Caldariomyces fumago is well documented as an extremely versatile catalyst, and studies are currently being conducted to delineate the fine structural features that allow the enzyme to possess chemical and physical similarities to the peroxidases, catalases, and P-450 cytochromes. Earlier investigations of ligand binding to the heme iron of chloroperoxidase, along with the presence of an invariant distal histidine residue in the active site of peroxidases and catalases, have led to the hypothesis that chloroperoxidase also possesses an essential histidine residue that may participate in catalysis. To address this in a more direct fashion, chemical modification studies were initiated with diethylpyrocarbonate. Incubation of chloroperoxidase with this reagent resulted in a time-dependent inactivation of enzyme. Kinetic analysis revealed that the inactivation was due to a simple bimolecular reaction. The rate of inactivation exhibited a pH dependence, indicating that modification of a titratable residue with a pKa value of 6.91 was responsible for inactivation; this data provided strong evidence for histidine derivatization by diethylpyrocarbonate. To further support these results, inactivation due to cysteine, tyrosine, or lysine modification was ruled out. The stoichiometry of histidine modification was estimated by the increase in absorption at 246 nm, and it was found that more than 1 histidine residue was derivatized when chloroperoxidase was inactivated with diethylpyrocarbonate. However, it was shown that the rates of modification and inactivation were not equivalent. This was interpreted to reflect that both essential and nonessential histidine residues were modified by diethylpyrocarbonate. Kinetic analysis indicated that modification of a single essential histidine residue was responsible for inactivation of the enzyme. Studies with [14C]diethylpyrocarbonate provided stoichiometric support that derivatization of a single histidine inactivated chloroperoxidase. Based on sequence homology with cytochrome c peroxidase, histidine 38 was identified as a likely candidate for the distal residue. Molecular modeling, based on secondary structure predictions, allows for the construction of an active site peptide, and implicates a number of other residues that may participate in catalysis.  相似文献   

3.
The site specific mutants of the thermophilic P450 (P450 175A1 or CYP175A1) were designed to introduce residues that could act as acid-base catalysts near the active site to enhance the peroxidases activity. The Leu80 in the distal heme pocket of CYP175A1 was located at a position almost equivalent to the Glu183 that is involved in stabilization of the ferryl heme intermediate in chloroperoxidase (CPO). The Leu80 residue of CYP175A1 was mutated with histidine (L80H) and glutamine (L80Q) that could potentially form hydrogen bond with hydrogen peroxide and facilitate formation and stabilization of the putative redox intermediate of the peroxidase cycle. The mutants L80H and L80Q of CYP175A1 showed higher peroxidase activity compared to that of the wild type (WT) CYP175A1 enzyme at 25 °C. The activity constants (kcat) for the L80H and L80Q mutants of CYP175A1 were higher than those of myoglobin and wild type cytochrome b562 at 25 °C. The optimum temperature for the peroxidase activity of the WT and mutants of CYP175A1 was ~ 70 °C. The rate of catalysis at temperatures above ~ 70 °C was higher for L80Q mutant of CYP175A1 compared to that of the well known natural peroxidase, horseradish peroxidase (HRP) that denatures at such high temperature. The peroxidase activities of the mutants of CYP175A1 were maximum at pH 9, unlike that of HRP which is at pH ~ 5. The results have been discussed in the light of understanding the structure-function relationship of the peroxidase properties of these thermostable heme proteins.  相似文献   

4.
Conformational mobility of the distal histidine residue has been implicated for several different heme peroxidase enzymes, but unambiguous structural evidence is not available. In this work, we present mechanistic, spectroscopic, and structural evidence for peroxide- and ligand-induced conformational mobility of the distal histidine residue (His-42) in a site-directed variant of ascorbate peroxidase (W41A). In this variant, His-42 binds "on" to the heme in the oxidized form, duplicating the active site structure of the cytochromes b but, in contrast to the cytochromes b, is able to swing "off" the iron during catalysis. This conformational flexibility between the on and off forms is fully reversible and is used as a means to overcome the inherently unreactive nature of the on form toward peroxide, so that essentially complete catalytic activity is maintained. Contrary to the widely adopted view of heme enzyme catalysis, these data indicate that strong coordination of the distal histidine to the heme iron does not automatically undermine catalytic activity. The data add a new dimension to our wider appreciation of structure/activity correlations in other heme enzymes.  相似文献   

5.
Mutagenesis studies have been used to investigate the role of a heme ligand containing protein loop (67-79) in the activation of di-heme peroxidases. Two mutant forms of the cytochrome c peroxidase of Pseudomonas aeruginosa have been produced. One mutant (loop mutant) is devoid of the protein loop and the other (H71G) contains a non-ligating Gly at the normal histidine ligand site. Spectroscopic data show that in both mutants the distal histidine ligand of the peroxidatic heme in the un-activated enzyme is lost or is exchangeable. The un-activated H71G and loop mutants show, respectively, 75% and 10% of turnover activity of the wild-type enzyme in the activated form, in the presence of hydrogen peroxide and the physiological electron donor cytochrome c(551). Both mutant proteins show the presence of constitutive reactivity with peroxide in the normally inactive, fully oxidised, form of the enzyme and produce a radical intermediate. The radical product of the constitutive peroxide reaction appears to be located at different sites in the two mutant proteins. These results show that the loss of the histidine ligand from the peroxidatic heme is, in itself, sufficient to produce peroxidatic activity by providing a peroxide binding site and that the formation of radical intermediates is very sensitive to changes in protein structure. Overall, these data are consistent with a major role for the protein loop 67-79 in the activation of di-heme peroxidases and suggest a "charge hopping" mechanism may be operative in the process of intra-molecular electron transfer.  相似文献   

6.
R Makino  R Chiang  L P Hager 《Biochemistry》1976,15(21):4748-4754
The oxidation-reduction potential of chloroperoxidase, an enzyme which catalyzes peroxidative chlorination, bromination, and iodination reactions, has been investigated. In addition to catalyzing biological halogenation reactions, chloroperoxidase is unusual in that the carbon monoxide complex of ferrous chloroperoxidase shows the typical long wavelength Soret absorption associated with P-450 hemoproteins. The pH dependence of the chloroperoxidase oxidation-reduction potential shows a discontinuity around pH 4.7. Similarly, measurements of the affinity of ferrous chloroperoxidase for carbon monoxide monitored both by spectroscopic and potentiometric titration exhibit a discontinuity in the pH 4.7 region. Oxidation-reduction potential measurements on chloroperoxidase in a CO atmosphere also show a discontinuous pH profile. These results suggest that ferrous chloroperoxidase undergoes reversible modification at low pH and that these changes are reflected in the oxidation-reduction potential. The oxidation-reduction potential of chloroperoxidase at pH 6.9 is - 140 mV, close to that measured for cytochrome P-450cam in the presence of substrate. The oxidation-reduction potential of chloroperoxidase at pH 2.7, the pH optimum for enzymatic chlorination, is +150 mV. The oxidation-reduction potentials of the halide complexes of chloroperoxidase (chloride, bromide, and iodide) are essentially identical with the potential measurements on the native enzyme. These observations suggest that, although halide anions bind to the enzyme, they probably do not bind as an axial ligand to the heme ferric iron.  相似文献   

7.
Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved glutamate residue, Glu-603, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, histidine, glutamine, and aspartate. Substitution of Glu-603 with alanine or histidine resulted in complete loss of L-CPTI activity. A change of Glu-603 to glutamine caused a significant decrease in catalytic activity and malonyl-CoA sensitivity. Substitution of Glu-603 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild type enzyme, resulted in partial loss in CPTI activity and a 15-fold decrease in malonyl-CoA sensitivity. The mutant L-CPTI with a replacement of the conserved Arg-601 or Arg-606 with alanine also showed over 40-fold decrease in malonyl-CoA sensitivity, suggesting that these two conserved residues may be important for substrate and inhibitor binding. Since a conservative substitution of Glu-603 to aspartate or glutamine resulted in partial loss of activity and malonyl-CoA sensitivity, it further suggests that the negative charge and the longer side chain of glutamate are essential for catalysis and malonyl-CoA sensitivity. We predict that this region of L-CPTI spanning these conserved C-terminal residues may be the region of the protein involved in binding the CoA moiety of palmitoyl-CoA and malonyl-CoA and/or the putative low affinity acyl-CoA/malonyl-CoA binding site.  相似文献   

8.
Chloroperoxidase,a peroxidase with potential   总被引:1,自引:0,他引:1  
Summary Chloroperoxidase is an extracellular heme glycoprotein produced by the imperfect fungusCaldariomyces fumago. The enzyme can catalyse chlorination reactions as well as act as a catalase or a peroxidase. As a peroxidase, it has a wide substrate specificity and we are interested in some applied aspects of this activity, requiring the production and purification of moderate quantities of the enzyme. High levels of chloroperoxidase are produced in a fructose synthetic medium, and highest enzyme production occurs in a low-shear environment. fungal pellets produce enzyme continuously at low medium replacement rates and at up to 0.6 g enzyme per 1: chloroperoxidase is essentially the only extracellular enzyme produced. Enzyme purification is uncomplicated and gives good yields of high purity. Pure enzyme is stable for weeks at room temperature and under pH control. Chloroperoxidase can be ionically bound to aminopropyl glass, then covalently immobilized by glutaraldehyde crosslinking. Immobilized preparations have been washed and re-used five times, and are most stable at pH 5.5-6. Like many peroxidases, chloroperoxidase will oxidize phenols and phenolics, often causing a precipitate, and can totally remove phenols at low aqueous concentrations. Chloroperoxidase incubation with the petroporphyrin component of crude oil asphaltene (fraction 5) causes a reduction or removal of the Soret band (410 nm) and the -peak (573 nm). This petroporphyrin fraction is enriched with vanadium which poisons the chemical catalyst used in cracking crude oil.  相似文献   

9.
Both myeloperoxidase (MPO) and lactoperoxidase (LPO) contain high affinity bound calcium, which has been suggested to play a structural role. Asp-96 in MPO, a residue next to the histidine distal from the heme prosthetic group, has been assigned to the calcium-binding site of the enzyme by X-ray crystallography. Multiple sequence alignment of known animal peroxidases has revealed that the calcium-binding site is highly conserved. In this study, we replaced Asp-96 in MPO and the counterpart Asp-227 in LPO both with Ala by site-directed mutagenesis. The level of peroxidase activity in insect cells infected with recombinant baculoviruses and their culture supernatants was reduced to virtually zero as a result of these mutations. Immunoblotting revealed that these mutant peroxidases were expressed in the cells but not secreted as effectively as the wild-type enzymes. Our findings suggest that a functional calcium-binding site is essential for the biosynthesis of active animal peroxidases.  相似文献   

10.
Recombinant human myoglobin mutants with the distal histidine residue replaced by Leu, Val, or Gln residues have been prepared by site-directed mutagenesis and expression in Escherichia coli. The recombinant apomyoglobin proteins have been successfully reconstituted with cobaltous protoporphyrin IX to obtain cobalt myoglobin mutant proteins, and the role of the distal histidine residue on the interaction between the bound ligand and the myoglobin molecule has been studied by EPR spectroscopy. We found that the distal histidine residue is significant in the orientation of the bound oxygen molecule. Low temperature photolysis experiments on both oxy cobalt proteins and ferric nitric oxide complexes indicated that the nature of the photolyzed form depends on the steric crowding of the distal heme pocket. To our surprise, the distal Leu mutant has a less restricted, less sterically crowded distal heme pocket than that of the distal Val mutant myoglobin, despite the fact that Leu has a larger side chain volume than Val. Our results demonstrate that the distal heme pocket steric crowding is not necessarily related to the side chain volume of the E7 residue.  相似文献   

11.
A truncated, soluble, and enzymatically active rat heme oxygenase lacking its membrane-associative, C-terminal segment was expressed in E. coli strain JM109. The roles of its four histidine residues were examined by determining the enzymatic activities of mutant enzymes in which each of these residues in turn was replaced by alanine. Mutation of histidine residue 25 to alanine resulted in marked decrease in activity for heme breakdown, indicating that this histidine residue has an important role in the heme oxygenase reaction.  相似文献   

12.
The first bacterial chloroperoxidase that is capable of catalyzing the chlorination of indole to 7-chloroindole was detected in Pseudomonas pyrrocinia ATCC 15958, a bacterium that produces the antifungal antibiotic pyrrolnitrin (Wiesner, W., van Pée, K.H., and Lingens, F. (1986) FEBS Lett. 209, 321-324). Here we describe the purification and characterization of this bacterial non-heme chloroperoxidase. The enzyme was purified by DEAE-cellulose chromatography at different pH values, molecular sieve chromatography, and Bio-Gel HTP hydroxylapatite. After the last purification step, chloroperoxidase was homogeneous by polyacrylamide gel electrophoresis and ultracentrifugation. Based on gel filtration and ultracentrifugation results, the molecular weight of the enzyme was 64,000 +/- 3,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band with the mobility of a 32,000 molecular weight species. Therefore, in solution at neutral pH, this chloroperoxidase is a dimer. The enzyme did not exhibit any absorbance in the visible region of the spectrum. The isoelectric point was 4.1. Chloroperoxidase was specific for I-, Br-, and Cl- and was not inhibited by azide, but was inhibited by cyanide and F-. This procaryotic chloroperoxidase catalyzed the bromination of monochlorodimedone but not its chlorination and has no peroxidase or catalase activity. The pH optimum of the enzyme was between 4.0 and 4.5, and the enzyme was stable between pH 3.5 and 8.5 and showed no loss of activity when incubated at 60 degrees C for 2 h. Chloroperoxidase also chlorinated 4-(2-amino-3-chlorophenyl) pyrrole to yield aminopyrrolnitrin, the immediate precursor of pyrrolnitrin. This suggests very strongly that chloroperoxidase is involved in the biosynthesis of the antibiotic pyrrolnitrin.  相似文献   

13.
The synthetic and mechanistic aspects of the use of heme peroxidases as functional mimics of the cytochrome P450 monooxygenases in oxygen-transfer reactions have been described. The chloroperoxidase from Caldariomyces fumago (CPO) is the catalyst of choice in sulfoxidation, hydroxylation and epoxidation on account of its high activity and enantioselectivity. Other heme peroxidases were less active by orders of magnitude; protein engineering has resulted in impressive improvements but even the most active mutant was still at least an order of magnitude less active than CPO. The 'oxygen-rebound' mechanisms of oxygen transfer mediated by heme enzymes - as originally conceived - have proved to be untenable. Dual pathway mechanisms, via oxoferryl species that insert oxygen as well as iron hydroperoxide species that insert OH(+), have been proposed that accommodate all of the known experimental data.  相似文献   

14.
Chloroperoxidase, a janus enzyme   总被引:1,自引:0,他引:1  
Manoj KM  Hager LP 《Biochemistry》2008,47(9):2997-3003
Chloroperoxidase is a versatile fungal heme-thiolate protein that catalyzes a variety of one-electron and two-electron oxidations. We report here that the alkylation of an essential histidine residue showed no effect on the one-electron peroxidations but inhibited two-electron oxidations. The pH profiles of different peroxidative substrates showed optimal activities at varying pH values for the same enzyme. 2-Allylphenol and substituted ortho-phenolics showed efficient peroxidations. Also, substrates excluded from the active site (or with no favorable positioning at the heme center or heme edge) were converted in the peroxidation reaction. While hydrogen peroxide serves as the superior activator in the two-electron oxidations, small alkylhydroperoxides give much better rates for peroxidation reactions. All the above observations indicate that one-electron oxidations are mechanistically quite different from the two-electron oxidations catalyzed by chloroperoxidase. We propose that the peroxidatic substrates interact predominantly outside the heme active site, presumably at the surface of the enzyme.  相似文献   

15.
Chloroperoxidase and H2O2 oxidize styrene to styrene oxide and phenylacetaldehyde but not benzaldehyde. The epoxide oxygen is shown by studies with H2(18)O2 to derive quantitatively from the peroxide. The epoxidation of trans-[1-2H]styrene by chloroperoxidase proceeds without detectable loss of stereochemistry, as does the epoxidation of styrene by rat liver cytochrome P-450, although much more phenylacetaldehyde is produced by chloroperoxidase than cytochrome P-450. Chloroperoxidase and cytochrome P-450 thus oxidize styrene by closely related oxygen-transfer mechanisms. Horseradish peroxidase does not oxidize styrene but does oxidize 2,4,6-trimethylphenol to 2,6-dimethyl-4-hydroxymethylphenol. The new hydroxyl group is partially labeled in incubations with H2(18)O but not H2(18)O2. The hydroxyl group thus appears to be introduced by addition of oxygen to the benzylic radical and water to the quinone methide intermediate but not by a cytochrome P-450-like oxene transfer mechanism. The results support the thesis that substrates primarily or exclusively react with the heme edge of horseradish peroxidase but are able to react with the ferryl oxygen of chloroperoxidase.  相似文献   

16.
Ribonuclease T1 (RNase T1, EC 3.1.27.3) is a guanosine-specific ribonuclease that cleaves the 3',5'-phosphodiester linkage of single-stranded RNA. It is assumed that the reaction is generated by concerted acid-base catalysis between residues Glu-58 and His-92 or His-40. From the results of chemical modification and NMR studies, it appeared that the residue Glu-58 was indispensable for nucleolytic activity. However, we have recently demonstrated that Glu-58 is an important but not an essential residue for catalytic activity, using the methods of genetic engineering to change Glu-58 to Gln-58 etc [Nishikawa, S., Morioka, H., Fuchimura, K., Tanaka, T., Uesugi, S., Ohtsuka, E., & Ikehara, M. (1986) Biochem. Biophys. Res. Commun. 138, 789-794]. In the present paper, we report that mutants of RNase T1 with residue Ala-40 or Ala-92 have almost no activity, while mutants that contain Ala-58 retain considerable activity. These results show that the two histidine residues, His-40 and His-92, but not Glu-58, are indispensable for the catalytic activity of the enzyme. We propose a revised reaction mechanism in which two histidine residues play a major role, as they do in the case of RNase A.  相似文献   

17.
We have analyzed four Nicotiana plumbaginifolia null mutants presumably affected in the heme domain of nitrate reductase. The DNA sequence of this domain has been determined for each mutant and for the wild type. Two mutations were identified as single base changes leading to, respectively, the substitution of a histidine residue by an asparagine (mutant E56) and to the appearance of an ochre stop codon (mutant E64). Based on the amino acid sequence homology between the nitrate reductase heme domain and mammalian cytochrome b5, we have predicted the three-dimensional structure of this domain. This showed that the nitrate reductase heme domain is structurally very similar to cytochrome b5 and it also confirmed that the residue involved in E56 mutation is one of the two heme-binding histidines. The two other mutations (mutants A1 and K21) were found to be, respectively, -1 and +1 frameshift mutations resulting in the appearance of an opal stop codon. These sequence data confirmed previous genetic and biochemical hypotheses on nitrate reductase-deficient mutants. Northern blot analysis of these mutants indicated that mutant E56 overexpressed the nitrate reductase mRNA, whereas the nonsense mutations present in the other mutants led to reduced levels of nitrate reductase mRNA.  相似文献   

18.
Cholesterol 7alpha-hydroxylase (cholesterol-NADPH oxidoreductase, EC 1.14.13.17, 7alpha-hydroxylating) is known to have extremely sensitive sulfhydryl group(s). It is believed that a cysteine residue that has a sulfhydryl group plays an important role in the decrease of this enzyme activity. The amino acid sequences of cholesterol 7alpha-hydroxylase of five different mammalian species, human, rat, rabbit, hamster and mouse, revealed that these mammalian species contain eight cysteine residues that are well conserved. To identify which cysteine residues are responsible for the extremely high lability, we used the technique of the site-directed mutagenesis. Eight mutated genes of human cholesterol 7alpha-hydroxylase in which one codon for a cysteine residue was changed to that for alanine were prepared and expressed in COS-1 cells. The protein mass and enzyme activity of cholesterol 7alpha-hydroxylse obtained from these eight mutated genes were determined. While all mutated genes expressed the enzyme mass, two mutated genes did not express protein capable of catalyzing 7alpha-hydroxylation of cholesterol: in one mutant a codon for the 7th cysteine residue (Cys 444) was substituted to that for alanine and in the other mutant a codon for the 8th cysteine residue (Cys 476) was changed similarly. These results suggest that the 7th and 8th cysteine residues are important for expression of the enzyme activity. Based on the fact that Cys 444 exists in the heme binding region, Cys 476 was suggested to be responsible for enzyme lability.  相似文献   

19.
This study was undertaken to examine the mechanistic significance of two highly conserved residues positioned in the active site of pyruvate dehydrogenase kinase, Glu-243 and His-239. We used site-directed mutagenesis to convert Glu-243 to Ala, Asp, or Gln and His-239 to Ala. The resulting mutant kinases demonstrated a greatly reduced capacity for phosphorylation of pyruvate dehydrogenase. The Glu-243 to Asp mutant had approximately 2% residual activity, whereas the Glu-243 to Ala or Gln mutants exhibited less than 0.5 and 0.1% residual activity, respectively. Activity of the His-239 to Ala mutant was decreased by approximately 90%. Active-site titration with [alpha-(32)P]ATP revealed that neither Glu-243 nor His-239 mutations affected nucleotide binding. All mutant kinases showed similar or even somewhat greater affinity than the wild-type kinase toward the protein substrate, pyruvate dehydrogenase complex. Furthermore, neither of the mutations affected the inter-subunit interactions. Finally, pyruvate dehydrogenase kinase was found to possess a weak ATP hydrolytic activity, which required Glu-243 and His-239 similar to the kinase activity. Based on these observations, we propose a mechanism according to which the invariant glutamate residue (Glu-243) acts as a general base catalyst, which activates the hydroxyl group on a serine residue of the protein substrate for direct attack on the gamma phosphate. The glutamate residue in turn might be further polarized through interaction with the neighboring histidine residue (His-239).  相似文献   

20.
The heme active site structure of chloroperoxidase (CPO), a glycoprotein that displays versatile catalytic activities isolated from the marine mold Caldariomyces fumago, has been characterized by two-dimensional NMR spectroscopic studies. All hyperfine shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues including the heme iron ligand (Cys(29)) attributable to the unique catalytic properties of CPO have been firmly assigned through (a) measurement of nuclear Overhauser effect connectivities, (b) prediction of the Curie intercepts from both one- and two-dimensional variable temperature studies, (c) comparison with assignments made for cyanide derivatives of several well characterized heme proteins such as cytochrome c peroxidase, horseradish peroxidase, and manganese peroxidase, and (d) examination of the crystal structural parameters of CPO. The location of protein modification that differentiates the signatures of the two isozymes of CPO has been postulated. The function of the distal histidine (His(105)) in modulating the catalytic activities of CPO is proposed based on the unique arrangement of this residue within the heme cavity. Contrary to the crystal state, the high affinity Mn(II) binding site in CPO (in solution) is not accessible to externally added Mn(II). The results presented here provide a reasonable explanation for the discrepancies in the literature between spectroscopists and crystallographers concerning the manganese binding site in this unique protein. Our study indicates that results from NMR investigations of the protein in solution can complement the results revealed by x-ray diffraction studies of the crystal form and thus provide a complete and better understanding of the actual structure of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号