首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.  相似文献   

2.
A mutant lysozyme in which Arg14 and His15 were deleted together exhibited higher activity toward glycol chitin than the wild-type lysozyme. Moreover, the mutant lysozyme, which is less stable than the wild-type lysozyme by 7 degrees C, showed a shift of temperature dependence of activity to the low temperature side compared with the wild-type lysozyme [Protein Eng. 7, 743-748 (1994)]. In the free enzyme, the internal motion of the mutant lysozyme was similar to that of the wild-type. The internal motions of the wild-type and mutant lysozymes in the enzyme-substrate complex increased more than those in the free enzymes. Moreover, the increased internal motions of the substrate-complexed mutant lysozyme were greater than those of the substrate-complexed wild-type lysozyme in several residues [J. Mol. Biol. 286, 1547-1565 (1999)]. The structure of the mutant lysozyme was very similar to that of the wild-type lysozyme. Both structures were also alike in the complex of the trimer of N-acetyl-D-glucosamine. The mobility from B-factors agreed to some degree with that from order parameters in the regions showing great mobility of the protein, but this was not the case in the regions showing fast motion. However, we came to the same conclusion that the increased activity of the mutant lysozyme is due to the increase in the fluctuation of the lysozyme molecule. B-factor and order parameter do not always exhibit harmony because the time-scale of the analysis of mobility is different. However, they are not incompatible but complementary for detecting precise protein motions.  相似文献   

3.
A molecular dynamics analysis of protein structural elements   总被引:6,自引:0,他引:6  
C B Post  C M Dobson  M Karplus 《Proteins》1989,5(4):337-354
The relation between protein secondary structure and internal motions was examined by using molecular dynamics to calculate positional fluctuations of individual helix, beta-sheet, and loop structural elements in free and substrate-bound hen egg-white lysozyme. The time development of the fluctuations revealed a general correspondence between structure and dynamics; the fluctuations of the helices and beta-sheets converged within the 101 psec period of the simulation and were lower than average in magnitude, while the fluctuations of the loop regions were not converged and were mostly larger than average in magnitude. Notable exceptions to this pattern occurred in the substrate-bound simulation. A loop region (residues 101-107) of the active site cleft had significantly reduced motion due to interactions with the substrate. Moreover, part of a loop and a 3(10) helix (residues of 67-88) not in contact with the substrate showed a marked increase in fluctuations. That these differences in dynamics of free and substrate-bound lysozyme did not result simply from sampling errors was established by an analysis of the variations in the fluctuations of the two halves of the 101 psec simulation of free lysozyme. Concerted transitions of four to five mainchain phi and psi angles between dihedral wells were shown to be responsible for large coordinate shifts in the loops. These transitions displaced six or fewer residues and took place either abruptly, in 1 psec or less, or with a diffusive character over 5-10 psec. Displacements of rigid secondary structures involved longer timescale motions in bound lysozyme; a 0.5 A rms change in the position of a helix occurred over the 55 psec simulation period. This helix reorientation within the protein appears to be a response to substrate binding. There was little correlation between the solvent accessible surface area and the dynamics of the different structural elements.  相似文献   

4.
Abu-Baker S  Lu JX  Chu S  Brinn CC  Makaroff CA  Lorigan GA 《Biochemistry》2007,46(42):11695-11706
2H and 15N solid-state NMR spectroscopic techniques were used to investigate both the side chain and backbone dynamics of wild-type phospholamban (WT-PLB) and its phosphorylated form (P-PLB) incorporated into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine (POPC) phospholipid bilayers. 2H NMR spectra of site-specific CD3-labeled WT-PLB (at Leu51, Ala24, and Ala15) in POPC bilayers were similar under frozen conditions (-25 degrees C). However, significant differences in the line shapes of the 2H NMR spectra were observed in the liquid crystalline phase at and above 0 degrees C. The 2H NMR spectra indicate that Leu51, located toward the lower end of the transmembrane (TM) helix, shows restricted side chain motion, implying that it is embedded inside the POPC lipid bilayer. Additionally, the line shape of the 2H NMR spectrum of CD3-Ala24 reveals more side chain dynamics, indicating that this residue (located in the upper end of the TM helix) has additional backbone and internal side chain motions. 2H NMR spectra of both WT-PLB and P-PLB with CD3-Ala15 exhibit strong isotropic spectral line shapes. The dynamic isotropic nature of the 2H peak can be attributed to side chain and backbone motions to residues located in an aqueous environment outside the membrane. Also, the spectra of 15N-labeled amide WT-PLB at Leu51 and Leu42 residues showed only a single powder pattern component indicating that these two 15N-labeled residues located in the TM helix are motionally restricted at 25 degrees C. Conversely, 15N-labeled amide WT-PLB at Ala11 located in the cytoplasmic domain showed both powder and isotropic components at 25 degrees C. Upon phosphorylation, the mobile component contribution increases at Ala11. The 2H and 15N NMR data indicate significant backbone motion for the cytoplasmic domain of WT-PLB when compared to the transmembrane section.  相似文献   

5.
Abstract

Hinge-bending in T4 lysozyme has been inferred from single amino acid mutant crystalline allomorphs by Matthews and coworkers. This raises an important question: are the different conformers in the unit cell artifacts of crystal packing forces, or do they represent different solution state structures? The objective of this theoretical study is to determine whether domain motions and hinge-bending could be simulated in T4 lysozyme using molecular dynamics. An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. Molecular dynamics calculations were computed using the Discover software package (Biosym Technologies). All hydrogen atoms were modeled explicitly with the inclusion of all 152 crystallographic waters at a temperature of 300 K. The native T4 lysozyme molecular dynamics simulation demonstrated hinge-bending in the protein. Relative domain motions between the N-terminal and C-terminal domains were evident. The enzyme hinge bending sites resulted from small changes in backbone atom conformations over several residues rather than rotation about a single bound. Two hinge loci were found in the simulation. One locus comprises residues 8–14 near the C-terminal of the A helix; the other site, residues 77–83 near the C-terminal of the C helix. Comparison of several snapshot structures from the dynamics trajectory clearly illustrates domain motions between the two lysozyme lobes. Time correlated atomic motions in the protein were analyzed using a dynamical cross-correlation map. We found a high degree of correlated atomic motions in each of the domains and, to a lesser extent, anticorrelated motions between the two domains. We also found that the hairpin loop in the N-terminal lobe (residues 19–24) acted as a mobile ‘flap’ and exhibited highly correlated dynamic motions across the cleft of the active site, especially with residue 142.  相似文献   

6.
We have used (15)N- and (2)H-NMR spin relaxation experiments to study the response of backbone and side-chain dynamics when a leucine or valine is substituted for a completely buried phenylalanine residue in the SH3 domain from the Fyn tyrosine kinase. Several residues show differences in the time scales and temperature dependences of internal motions when data for the three proteins are compared. Changes were also observed in the magnitude of dynamics, with the valine, and to a lesser extent leucine mutant, showing enhanced flexibility compared to the wild-type (WT) protein. The motions of many of the same amide and methyl groups are affected by both mutations, identifying a set of loci where dynamics are sensitive to interactions involving the targeted side chain. These results show that contacts within the hydrophobic core affect many aspects of internal mobility throughout the Fyn SH3 domain.  相似文献   

7.
The structure and internal motions of the protein hen egg white lysozyme are studied by analysis of simulation and experimental data. A molecular dynamics simulation and an energy minimization of the protein in vacuum have been made and the results compared with high-resolution structures and temperature factors of hen egg white lysozyme in two different crystal forms and of the homologous protein human lysozyme. The structures obtained from molecular dynamics and energy minimization have root-mean-square deviations for backbone atoms of 2.3 Å and 1.1–1.3 Å, respectively, relative to the crystal structures; the different crystal structures have root-mean-square deviations of 0.73–0.81 Å for the backbone atoms. In comparing the backbone dihedral angles, the difference between the dynamics and the crystal structure on which it is based is the same as that between any two crystal structures. The internal fluctuations of atomic positions calculated from the molecular dynamics trajectory agree well with the temperature factors from the three structures. Simulation and crystal results both show that there are large motions for residues involved in exposed turns of the backbone chain, relatively smaller motions for residues involved in the middle of helices or β-sheet structures, and relatively small motions of residues near disulfide bridges. Also, both the simulation and crystal data show that side-chain atoms have larger fluctuations than main-chain atoms. Moreover, the regions that have large deviations among the x-ray crystal structures, which indicates flexibility, are found to have large fluctuations in the simulation.  相似文献   

8.
The N-terminal, matrix metalloproteinase (MMP)-inhibitory fragment of recombinant, human tissue inhibitor of metalloproteinases (TIMP-1) exhibits varied backbone dynamics and rigidity. Most striking is the presence of chemical exchange in the MMP-binding ridge reported to undergo conformational change upon MMP binding. Conformational exchange fluctuations in microseconds to milliseconds map to the sites of MMP-induced fit at residues Val29 through Leu34 of the AB loop and to the Ala65 and Cys70 "hinges" of the CD loop of TIMP-1. Slow chemical exchange is also present at the type I turn of the EF loop at the base of the MMP-binding ridge. These functional slow motions and other fast internal motions are evident from backbone (15)N spin relaxation at 500 and 750 MHz, whether interpreted by the model-free formalism with axial diffusion anisotropy or by the reduced spectral density approach. The conformational exchange is confirmed by its deviation from the trend between R(2) and the cross-correlation rate eta. The magnetic field-dependence indicates that the chemical exchange broadening in the AB and CD loops is fast on the time-scale of chemical shift differences. The conformational exchange rates for most of these exchanging residues, which can closely approach MMP, appear to be a few thousand to several thousand per second. The slow dynamics of the TIMP-1 AB loop contrast the picosecond to nanosecond dynamics reported in the longer TIMP-2 AB loop.  相似文献   

9.
Mulder FA  Hon B  Muhandiram DR  Dahlquist FW  Kay LE 《Biochemistry》2000,39(41):12614-12622
The Leu99-->Ala mutant of T4 lysozyme contains a large internal cavity in the core of its C-terminal domain that is capable of reversibly binding small hydrophobic compounds. Although the cavity is completely buried, molecules such as benzene or xenon can exchange rapidly in and out. The dynamics of the unliganded protein have been compared to the wild-type protein by measuring the NMR spin relaxation rates of backbone amide and side chain methyl nuclei. Many residues surrounding the cavity were found to be affected by a chemical exchange process with a rate of 1500 +/- 200 s(-1), which is quenched upon addition of saturating amounts of the ligand xenon. The relationship between the structure, dynamics, and energetics of the T4 lysozyme mutant is discussed.  相似文献   

10.
11.
Yun S  Jang DS  Kim DH  Choi KY  Lee HC 《Biochemistry》2001,40(13):3967-3973
The backbone dynamics of Delta(5)-3-ketosteroid isomerase (KSI) from Pseudomonas testosteroni has been studied in free enzyme and its complex with a steroid ligand, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S(2), tau(e), and R(ex)) and the overall rotational correlation time (tau(m)). The rotational correlation times were 19.23 +/- 0.08 and 17.08 +/- 0.07 ns with the diffusion anisotropies (D( parallel)/D( perpendicular)) of 1.26 +/- 0.03 and 1.25 +/- 0.03 for the free and steroid-bound KSI, respectively. The binding of 19-NTHS to free KSI causes a slight increase in the order parameters (S(2)) for a number of residues, which are located mainly in helix A1 and strand B4. However, the majority of the residues exhibit reduced order parameters upon ligand binding. In particular, strands B3, B5, and B6, which have most of the residues involved in the dimer interaction, have the reduced order parameters in the steroid-bound KSI, indicating the increased high-frequency (pico- to nanosecond) motions in the intersubunit region of this homodimeric enzyme. Our results differ from those of previous studies on the backbone dynamics of monomeric proteins, in which high-frequency internal motions are typically restricted upon ligand binding.  相似文献   

12.
A set of single Trp mutants of class B Tet repressor (TetR), in which Trp residues are located from positions 159 to 167, has been engineered to investigate the dynamics of the loop joining the alpha-helices 8 and 9. The fluorescence anisotropy decay of most mutants can be described by the sum of three exponential components. The longest rotational correlation time, 30 ns at 10 degrees C, corresponds to the overall rotation of the protein. The shortest two components, on the subnanosecond and nanosecond time scale, are related to internal motions of the protein. The initial anisotropy, in the 0.16-0.22 range, indicates the existence of an additional ultrafast motion on the picosecond time scale. Examination of physical models for underlying motions indicates that librational motions of the Trp side chain within the rotameric chi(1) x chi(2) potential wells contribute to the picosecond depolarization process, whereas the subnanosecond and nanosecond depolarization processes are related to backbone dynamics. In the absence of inducer, the order parameters of these motions, about 0.90 and 0.80 for most positions, indicate limited flexibility of the loop backbone. Anhydrotetracycline binding to TetR induces an increased mobility of the loop on the nanosecond time scale. This suggests that entropic factors might play a role in the mechanism of allosteric transition.  相似文献   

13.
The backbone dynamics of the tetrameric p53 oligomerization domain (residues 319-360) have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and heteronuclear NOEs were measured for 39 of 40 non-proline backbone NH vectors at both field strengths. The overall correlation time for the tetramer, calculated from the T1/T2 ratios, was found to be 14.8 ns at 35 degrees C. The correlation times and amplitudes of the internal motions were extracted from the relaxation data using the model-free formalism (Lipari G, Szabo A, 1982, J Am Chem Soc 104:4546-4559). The internal dynamics of the structural core of the p53 oligomerization domain are uniform and fairly rigid, with residues 327-354 exhibiting an average generalized order parameter (S2) of 0.88 +/- 0.08. The N- and C-termini exhibit substantial mobility and are unstructured in the solution structure of p53. Residues located at the N- and C-termini, in the beta-sheet, in the turn between the alpha-helix and beta-sheet, and at the C-terminal end of the alpha-helix display two distinct internal motions that are faster than the overall correlation time. Fast internal motions (< or = 20 ps) are within the extreme narrowing limit and are of uniform amplitude. The slower motions (0.6-2.2 ns) are outside the extreme narrowing limit and vary in amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
NMR solution structure and backbone dynamics of the CC chemokine eotaxin-3.   总被引:1,自引:0,他引:1  
J Ye  K L Mayer  M R Mayer  M J Stone 《Biochemistry》2001,40(26):7820-7831
Eotaxin-3 is one of three related chemokines that specifically activate chemokine receptor CCR3. We report the 3D structure and backbone dynamics of eotaxin-3 determined by NMR spectroscopy. Eotaxin-3 is monomeric under the conditions in this study and consists of an unstructured N-terminus before the first two conserved cysteine residues, an irregularly structured N-loop following the second conserved cysteine, a single turn of 3(10)-helix, a three-stranded antiparallel beta-sheet, an alpha-helix, and an unstructured C-terminal tail. As in other chemokines, the alpha-helix packs against one face of the beta-sheet. The average backbone and heavy atom rmsd values of the 20 structures (residues 9-65) are 0.44 and 1.01 A, respectively. A comparison between the structures of eotaxin-3 and related chemokines suggests that the electrostatic potential in the vicinity of a surface groove and the structure of the beta2-beta3 turn may be important for maintaining receptor specificity. The backbone dynamics of eotaxin-3 were determined from 15N NMR relaxation data using the extended model free dynamics formalism. Large amplitude motions on the picosecond to nanosecond time scale were observed in both termini and in some residues in the N-loop, the beta1-beta2 turn, and the beta3 strand; the location of these residues suggests a possible role for dynamics in receptor binding and activation. In contrast to eotaxin, eotaxin-3 exhibits no substantial mobility on the microsecond to millisecond time scale.  相似文献   

15.
Urtica dioica agglutinin is a small plant lectin that binds chitin. We purified the isolectin VI (UDA-VI) and crystal structures of the isolectin and its complex with tri-N-acetylchitotriose (NAG3) were determined by X-ray analysis. The UDA-VI consists of two domains analogous to hevein and the backbone folding of each domain is maintained by four disulfide bridges. The sequence similarity of the two domains is not high (42 %) but their backbone structures are well superimposed except some loop regions. The chitin binding sites are located on the molecular surface at both ends of the dumbbell-shape molecule. The crystal of the NAG3 complex contains two independent molecules forming a protein-sugar 2:2 complex. One NAG3 molecule is sandwiched between two independent UDA-VI molecules and the other sugar molecule is also sandwiched by one UDA-VI molecule and symmetry-related another one. The sugar binding site of N-terminal domain consists of three subsites accommodating NAG3 while two NAG residues are bound to the C-terminal domain. In each sugar-binding site, three aromatic amino acid residues and one serine residue participate to the NAG3 binding. The sugar rings bound to two subsites are stacked to the side-chain groups of tryptophan or histidine and a tyrosine residue is in face-to-face contact with an acetylamino group, to which the hydroxyl group of a serine residue is hydrogen-bonded. The third subsite of the N-terminal domain binds a NAG moiety with hydrogen bonds. The results suggest that the triad of aromatic amino acid residues is intrinsic in sugar binding of hevein-like domains.  相似文献   

16.
The backbone dynamics in the native state of apocytochrome b5 were studied using 15N nuclear magnetic spin relaxation measurements. The field (11.7 and 14.1 T) and temperature (10-25 degrees C) dependence of the relaxation parameters (R1, R2, and R1rho) and the 1H-15N NOE established that the protein undergoes multiple time scale internal motions related to the secondary structure. The relaxation data were analyzed with the reduced spectral density mapping approach and within the extended model-free framework. The apoprotein was confirmed to contain a disordered heme-binding loop of approximately 30 residues with dynamics on the sub-nanosecond time scale (0.6 < S2 < 0.7, 100 ps < taue < 500 ps). This loop is attached to a structured hydrophobic core, rigid on the picosecond time scale (S2 > 0.75, taue < 50 ps). The inability to fit the data for several residues with the model-free protocol revealed the presence of correlated motion. An exchange contribution was detected in the transverse relaxation rate (R2) of all residues. The differential temperature response of R2 along the backbone supported slower exchange rates for residues in the loop (tauex > 300 micros) than for the folded polypeptide chain (tauex < 150 micros). The distribution of the reduced spectral densities at the 1H and 15N frequencies followed the dynamic trend and predicted the slowing of the internal motions at 10 degrees C. Comparison of the dynamics with those of the holoprotein [Dangi, B., Sarma, S., Yan, C., Banville, D. L., and Guiles, R. D. (1998) Biochemistry 37, 8289-8302] demonstrated that binding of the heme alters the time scale of motions both in the heme-binding loop and in the structured hydrophobic core.  相似文献   

17.
Takano K  Yamagata Y  Yutani K 《Biochemistry》2000,39(29):8655-8665
To clarify the role of amino acid residues at turns in the conformational stability and folding of a globular protein, six mutant human lysozymes deleted or substituted at turn structures were investigated by calorimetry, GuHCl denaturation experiments, and X-ray crystal analysis. The thermodynamic properties of the mutant and wild-type human lysozymes were compared and discussed on the basis of their three-dimensional structures. For the deletion mutants, Delta47-48 and Delta101, the deleted residues are in turns on the surface and are absent in human alpha-lactalbumin, which is homologous to human lysozyme in amino acid sequence and tertiary structure. The stability of both mutants would be expected to increase due to a decrease in conformational entropy in the denatured state; however, both proteins were destabilized. The destabilizations were mainly caused by the disappearance of intramolecular hydrogen bonds. Each part deleted was recovered by the turn region like the alpha-lactalbumin structure, but there were differences in the main-chain conformation of the turn between each deletion mutant and alpha-lactalbumin even if the loop length was the same. For the point mutants, R50G, Q58G, H78G, and G37Q, the main-chain conformations of these substitution residues located in turns adopt a left-handed helical region in the wild-type structure. It is thought that the left-handed non-Gly residue has unfavorable conformational energy compared to the left-handed Gly residue. Q58G was stabilized, but the others had little effect on the stability. The structural analysis revealed that the turns could rearrange the main-chain conformation to accommodate the left-handed non-Gly residues. The present results indicate that turn structures are able to change their main-chain conformations, depending upon the side-chain features of amino acid residues on the turns. Furthermore, stopped-flow GuHCl denaturation experiments on the six mutants were performed. The effects of mutations on unfolding-refolding kinetics were significantly different among the mutant proteins. The deletion/substitutions in turns located in the alpha-domain of human lysozyme affected the refolding rate, indicating the contribution of turn structures to the folding of a globular protein.  相似文献   

18.
Binding of the product inhibitor p-nitrophenol to the monoclonal esterolytic antibody NPN43C9 has been investigated by performing NMR spectroscopy of the heterodimeric variable-domain fragment (Fv) of the antibody in the presence and absence of inhibitor. Structural information from changes in chemical shift upon binding has been related to the changes in local dynamics in the active site of the catalytic antibody using NMR relaxation measurements. Significant changes in the chemical shifts of the backbone resonances upon binding extend beyond the immediate vicinity of the antigen binding site into the interface between the two associated polypeptides that form the Fv heterodimer, a possible indication that the binding of ligand causes a change in the relative orientations of the component light (V(L)) and heavy (V(H)) chain polypeptides. Significant differences in backbone dynamics were observed between the free Fv and the complex with p-nitrophenol. A number of resonances, including almost all of the third hypervariable loop of the light chain (L3), were greatly broadened in the free form of the protein. Other residues in the antigen-binding site showed less broadening of resonances, but still required exchange terms (R(ex)) in the model-free dynamics analysis, consistent with motion on a slow timescale in the active site region of the free Fv. Binding of p-nitrophenol caused these resonances to sharpen, but some R(ex) terms are still required in the analysis of the backbone dynamics. We conclude that the slow timescale motions in the antigen-binding site are very different in the bound and free forms of the Fv, presumably due to the damping of large-amplitude motions by the bound inhibitor.  相似文献   

19.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   

20.
The region including the conserved Ser65-Asp66 dipeptide in the tetracycline/H+ antiporter (TET) encoded by transposon Tn10 is thought to play a gating role (Yamaguchi, A., Ono, N., Akasaka, T., Noumi, T., and Sawai, T. (1990) J. Biol. Chem. 265, 15525-15530). The dipeptide is in putative interhelix loop2-3, which also includes the conserved sequence motif, GXXXXRXGRR, found in all TET proteins and sugar/H+ symporters. Through the combination of localized random and site-directed mutagenesis, each residue in loop2-3 was replaced. Among 10 residues in putative loop2-3, the important residues, of which substitution resulted in significant reduction or complete loss of the transport activity, were Gly62, Asp66, Gly69, and Arg70. The defect in the transport activity of the Gly62 and Gly69 substitution mutants corresponded to the steric hindrance by the substituents as to the putative beta-turn structure of the peptide backbone containing these glycines. Of 3 conserved Arg residues, the replacement of only Arg70 caused complete loss of the activity except for replacement with Lys, indicating the importance of a positive charge at this position, which is similar to the essentiality of a negative charge at Asp66. A "charge-neutralizing" intra-loop salt bridge between Asp66 and Arg70 was not likely because the double mutant in which Asp66 and Arg70 were replaced with asparagine and leucine, respectively, showed no transport activity. A triple mutant with only one positive charge at Arg70 in this loop showed about half the wild-type activity, indicating that the polycationic nature of the loop was not critical for the activity. Cys mutants as to the unessential residues in the loop were modifiable with N-ethylmaleimide, except for the Met64----Cys and Arg71----Cys mutants; however, the modification of only the Ser65----Cys mutant caused significant inhibition of the transport activity, indicating that position 65 is a unique position in the structure of loop2-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号