首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several naphthoquinones, except 2-hydroxy-1,4-naphthoquinone, were found to inhibit microsomal cytochrome P-450-linked monooxygenase activities in rabbit liver and human placenta. In particular, 5-hydroxy-1,4-naphthoquinone inhibited placental estrogen biosynthesis more effectively than it did hepatic drug oxidation reactions. There was little contribution by superoxide radicals to these enzyme inhibitions by naphthoquinones. Spectrophotometric studies revealed that naphthoquinones bind to the cytochrome P-450 component of the monooxygenase complex in both microsomal systems, suggesting that the inhibition is caused by direct interaction of these compounds with the heme.  相似文献   

2.
Immunohistochemical and biochemical studies were performed on the brains of adult female and male rats using a specific antibody against bovine adrenocortical cytochrome P-450scc. The results showed that in both male and female rats, the myelinated regions of the white matter are selectively immunostained throughout the brain and that even in rats pretreated with colchicine, there is never positive staining of neuronal cell bodies and their dendrites in any brain region. Western immunoblotting with the P-450scc antibody and enzymatic assays revealed that P-450scc and cholesterol side-chain cleavage activity were present in a homogenate derived from the cortical white matter, but not detectable in that from the cerebral cortex. Furthermore, quantitation of the P-450scc protein in the immunoblots indicated that the concentration of P-450scc in the cortical white matter of both female and male rat brains is approx. 3-4 pmol per mg tissue protein. Thus it could be concluded that in the adult rat brain, P-450scc and cholesterol side-chain cleavage activity are selectively localized only in the myelinated region of the white matter.  相似文献   

3.
Oxidative demethylation of dimethylnitosamine was studied with both reconstituted and unresolved liver microsomal cytochrome P-450 enzyme systems from rats and hamsters. Proteinase treatment of liver microsomal preparations yielded cytochrome P-450 particulate fractions. Both cytochrome P-450 and NADPH- cytochrome c reductase fractions were required for optimum demethylation activity. Particulate cytochrome P-450 fractions were more effecient than either Triton X-100- or cholatesolubilized preparations of these particles in demethylation activity with rat and hamster liver preparations appear to be due to differences in specificity in their cytochrome P-450 fractions.  相似文献   

4.
H Taniguchi  Y Imai  R Sato 《Biochemistry》1987,26(22):7084-7090
NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital-treated rabbits, were incorporated into dimyristoylphosphatidylcholine vesicles. The reduction of cytochrome P-450 by NADPH in the reconstituted vesicles proceeded in a biphasic fashion, and 70-80% of the absorbance change was associated with the fast phase. The Arrhenius plot of the apparent first-order rate constant of the fast-phase reduction showed a marked discontinuity around the phase transition temperature of the synthetic phospholipid; an almost 10-fold change in rate constant was associated with this discontinuity. It was, therefore, suggested that the reduction of cytochrome P-450 by reductase in this system was a diffusion-limited reaction controlled by the viscosity of the phospholipid membrane. The Arrhenius plot of overall drug monooxygenase activity catalyzed by the reconstituted vesicles showed a break but in a different way from that observed for the reduction of cytochrome P-450. This break was accompanied only by a change of the slope of the plot but not by a change in reaction rate. This difference in the two Arrhenius plots was attributed to that in the rate-limiting step of the two reactions. NADPH-cytochrome c reductase activity of the reconstituted vesicles, an activity catalyzed by the reductase alone, and cumene hydroperoxide dependent N-methylaniline demethylation activity catalyzed by cytochrome P-450 alone did not show any break in the Arrhenius plots.  相似文献   

5.
Retinoic acid metabolism by a system reconstituted with cytochrome P-450   总被引:3,自引:0,他引:3  
Feeding rats with a diet containing a hundred times the normal amount of vitamin A resulted, within 2 to 3 weeks, in an increase in total hepatic microsomal cytochrome P-450 content. This was associated, in isolated microsomes, with an enhanced conversion of all-trans-retinoic acid to polar metabolites, including a two- to threefold increased production of 4-hydroxy- and 4-oxo-retinoic acid, whether expressed per microsomal protein or per cytochrome P-450. Unlike effects of other inducers (e.g., phenobarbital or methylcholanthrene), activities of benzphetamine, aminopyrine, and ethylmorphine demethylases or benzopyrene hydroxylase were not increased. Furthermore, the CO-reduced difference spectral peak was shifted towards 449 nm. On sodium dodecyl sulfate-gel electrophoresis, one band was increased with electrophoretic mobility identical to that of cytochrome P-450f, a recently isolated new form which has a CO-reduced difference spectral peak at 448 nm. In a system reconstituted with NADPH-cytochrome P-450 reductase, NADPH, and phospholipid, purified cytochromes P-450f and b were discovered to promote conversion of retinoic acid to polar metabolites, including 4-hydroxy-retinoic acid.  相似文献   

6.
The N- and ring-hydroxylation of 2-acetamidofluorene were studied with a reconstituted cytochrome P-450 enzyme from microsomal fractions of liver from both control and 3-methylcholanthrene-pretreated rats. Proteinase treatment and Triton X-100 solubilization were two important steps for partial purification of the cytochrome P-450 fraction. Both cytochrome P-450 and NADPH-cytochrome c reductase fractions were required for optimum N- and ring-hydroxylation activity. Hydroxylation activity was determined by the source of cytochrome P-450 fraction; cytochrome P-450 fraction from pretreated animals was severalfold more active than the fraction from controls. Formation of N-hydroxylated metabolites with reconstituted systems from both control and pretreated animals was greater than that with their respective whole microsomal fractions.  相似文献   

7.
8.
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone.  相似文献   

9.
The light-induced enhancement of 7-ethoxycoumarin-O-deethylase activity was measured in a reconstituted system consisting of the enzyme P-450 II B1 (P-450PB-B) and the NADPH-cytochrome P-450 reductase. The phases of the catalytic cycle of 2 · 1012 protein complexes were locked by periodic application of light pulses (0.1 s duration, 1.2–2.5 s repetition time, and 390–470 nm 0.27 Joule/nmol P-450). More than 80% of the active reconstituted enzyme complexes worked in phase if the repetition time (1.32 s) was slightly smaller than the catalytic cycle time of the free running enzyme (1.54 s). The percentage of synchronized enzyme complexes as a function of the repetition time is shown. It is shown that the lifetime of the product-enzyme complex is shortened by the light.Abbreviations P-450 liver microsomal cytochrome P-450 - PB phenobarbital Offprint requests to: H. Gruler  相似文献   

10.
Inactivation of cytochrome P-450 LM2 induced by hydrogen peroxide formed in the active site of the enzyme was studied. Catalase did not protect cytochrome P-450 LM2 from inactivation during its operation in a soluble reconstituted system. The hemoprotein inactivation in this system was found to depend on the ratio of hemo- to flavoproteins. It was demonstrated that cytochrome P-450 LM2 inactivation during catalysis is accompanied by cleavage of the hemoprotein molecule. It is probable that this fact plays a key role in regulation of enzyme decay.  相似文献   

11.
Compound 102804 isolated from Bacillus cereus has been found to be a potent inhibitor of the N5-methyltetrahydrofolate-homocysteine transmethylase isolated from Escherichia coli B. This inhibition was noted when 102804 was added to the enzyme reaction mixture after the reaction started or concurrently with the preparation of the mixture. Chemically inactivated 102804 has no activity as an inhibitor of this enzyme system.  相似文献   

12.
Native and zinc reconstituted carboxypeptidase B were nitrated with tetranitromethane. The inactivation of the reconstituted enzyme was faster than that of the native enzyme and was accompanied by the formation of a considerable amount of enzyme dimers. The inactivation and dimerization reflected changes in the reactivity of active site tyrosine residue(s), thus indicating microenvironmental changes which occur during metal substitution. The change in tyrosine reactivity could be correlated with the residence of the enzyme in the metal-free state.  相似文献   

13.
The soluble, cytochrome P-450 dependent fatty acid (ω-2) hydroxylase from Bacillus megaterium catalyzes the hydroxylation of both n-saturated and n-monohydroxyfatty acids. Continued hydroxylation of hydroxyfatty acids is dependent upon the position of the hydroxyl group since the ω-1, ω-2 and ω-3 monohydroxy products of the unsubstituted, saturated fatty acid series are not substrates. Utilizing a series of monohydroxystearate positional isomers this study demonstrates that there exists an optimal hydroxy position on the substrate's carbon chain. Competitive inhibition of palmitate hydroxylation by monohydroxystearates indicates that 6-hydroxystearate is a better substrate than palmitate, one of the more active substrates for hydroxylation. This suggests that substrate-binding at the active site is strongly influenced by a “non-hydrophobic” binding region on the enzyme.  相似文献   

14.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

15.
A fluorescent probe, N-(1-anilinonaphth-4-yl)-maleimide (ANM), was specifically labeled to SH group(s) in the hydrophilic moiety of NADPH-cytochrome P-450 reductase at a ratio of 1 +/- 0.1 ANM/mol of protein. The ANM-labeled reductase and P-450 were reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles in which all of the enzymes were functionally active. The reconstitution of the mixed-function oxidase system was found to be strongly dependent on both the lipid to protein molar ratio and phospholipid composition. The interactions of ANM-labeled reductase with P-450 in proteoliposomes were investigated by perturbation of the fluorescence of ANM. Upon incorporation of P-450 into the phospholipids vesicles (ANM-reductase/P-450/lipids identical to 1:1.4:800), a significant decrease of total fluorescence intensity and slight increase of emission anisotropy of ANM were observed. In the average fluorescence lifetime of ANM bound with reductase, an appreciable change was shown between the absence and presence of P-450 in the vesicles. These data provide clear evidence that significant molecular interactions occur between the two proteins in a membranous reconstituted system.  相似文献   

16.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

17.
The reduction of hexavalent chromium (Cr(VI] by the monooxygenase components was studied. Both a reconstituted system of cytochrome P-450 (P-450) and cytochrome b5 (b5) with NADPH was capable of reducing Na2CrO4 (30 microM) provided anaerobic atmosphere. The rates were 1.29 nmol Cr.min-1 nmol P-450(-1) and 0.73 nmol Cr.min-1 nmol b5(-1). Using NADH instead of NADPH gave very low reducing activities, confirming the enzymic nature of the P-450 dependent Cr(VI) reductase reaction. Oxygen, 22% (air) and 0.1% gave 89% and 69% inhibition of Cr(VI) reducing activity, respectively. Carbon monoxide (100%) caused an inhibition of about 37% and 44% for P-450 and b5, respectively. Externally added flavin mononucleotide (FMN) (3 microM) or Fe-ADP (10 microM) to the complete system stimulated the enzymatic reaction about 2-fold and 3-fold, respectively.  相似文献   

18.
Metabolism of the environmental pollutant and weak carcinogen benzo[c]-phenanthrene (B[c]Ph) by rat liver microsomes and by a purified and reconstituted cytochrome P-450 system is examined. B[c]Ph proved to be one of the best polycyclic aromatic hydrocarbon substrates for rat liver microsomes. It is metabolized by microsomes from control rats and by rats treated with phenobarbital or 3-methylcholanthrene at 3.9, 4.2 and 7.8 nmol/nmol cytochrome P-450/min, respectively. Principal metabolites are dihydrodiols along with small amounts (less than 10%) of phenols. The K-region 5,6-dihydrodiol is the major metabolite and accounts for 77-89% of the total metabolites. The 3,4-dihydrodiol with a bay-region 1,2-double bond is formed in much smaller amounts and accounts for only 6-17% of the total metabolites, the highest percentage being formed by microsomes from control rats. Highly purified monooxygenase systems reconstituted with cytochrome P-450a, P-450b and P-450c and epoxide hydrolase form predominantly the 5,6-dihydrodiol (95-97% of total metabolites) and only a small percentage of the 3,4-dihydrodiol (3-5% of total metabolites). The 3,4-dihydrodiol is formed with higher enantiomeric purity by microsomes from 3-methylcholanthrene-treated rats (88%) than by microsomes from control rats (78%) or phenobarbital-treated rats (60%). In each case the (3R,4R)-enantiomer predominates. B[c]Ph 5,6-dihydrodiol formed by all three microsomal preparations is nearly racemic.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号