首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Donna M. Nesbitt  Steven P. Berg   《BBA》1980,593(2):353-361
The light-induced hindrance of spin label motion increases linearly with light intensity. However, it has not been possible to unambiguously demonstrate light saturation due to the very high rates of spin label reduction at high light intensity. The light-induced hindrance of spin label motion may be mimicked in the dark by subjecting thylakoids to appropriately low pH regimes. Uncouplers such as gramicidin-D and methylamine reduce the light-induced hindrance to dark levels as does ethylenedinitrilotetraacetate (EDTA) treatment. Valinomycin plus KCl which destroys the electric potential is only partially effective in reducing the light-induced hindrance. These results indicate that protons in the aqueous lumen of the thylakoids are closely involved with the observed light-induced hindrance of spin label motion.  相似文献   

2.
A detailed picture of the orientation and restricted motion of the cholestane spin label (3-spiro-doxyl-5α-cholestane) in planar multibilayers of dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine has been recorded by simultaneous simulation of ESR spectra obtained with the magnetic field parallel and perpendicular to the bilayers (Shimoyama, Y., Eriksson, L.E.G. and Ehrenberg, A. (1978) Biochim. Biophys. Acta 508, 213–235). The analysis has been made over the temperature range ?30°C to 60°C on samples containing 20 to 22% water. At low temperatures the cholestane spin label is tilted with respect to the lipid bilayer normal by an angle of approx. 30° which disappears at the pretransition. In this low temperature range the restricted twisting motion has an activation energy of 5.5 kJ·mol?1. Above the main transition the twisting motion is unrestricted and has the activation energy 20 kJ·mol?1. From below the pretransition to above the main transition the velocity of the twisting motion increases by an order of magnitude. The amplitude of the wobbling motion increases abruptly from 0° to 35° at the main transition.  相似文献   

3.
The binding to human intact erythrocytes of two different spin-labelled derivatives of chlorpromazine has been studied. The influence of the positively charged side chain of the drug has been the focus of our attention. The positively charged amphiphilic compound (spin derivative I) is water-soluble up to 80 microM at pH values below 5.9. The apolar analogue (spin derivative II) aggregates in aqueous buffer from the lowest concentration tested. Both spin derivatives undergo a slow reduction inside the erythrocyte. The reduced nitroxides are readily reoxidized by adding a low, non-quenching, concentration of potassium ferricyanide to the intact erythrocytes. The fractions of spin label I and II bound to the erythrocyte membrane or to the erythrocyte-extracted lipids remain constant as a function of the temperature (3-42 degrees C) and as a function of the concentration of the spin label up to 150 microM. E.s.r. spectra of both spin labels show a two-component lineshape when they are bound to intact erythrocytes. Below 35 degrees C for the positively charged spin probe, and below 32 degrees C for the apolar spin probe, the simulation of the lineshape shows that more than 50% of the spectrum originates from a slow-motion component. This slow-motion component is also found in erythrocyte-extracted lipids probed by the positively charged spin label below 25 degrees C. In contrast, no slow-motion component is detected in the range 4-40 degrees C for the apolar spin label in erythrocyte-extracted lipids. In this environment the apolar probe experiences a single fast anisotropic motion with an exponential dependence on 1/temperature. Detailed lineshape simulations take into account the exchange frequency between binding sites where the probe experiences a fast motion and binding sites where it experiences a slow motion. The exchange frequency is strongly temperature-dependent. Characterization of the different motions experienced inside the different locations has been achieved and compared for whole erythrocytes and for the extracted lipids. The biochemical nature of the binding sites (membrane protein/acidic phospholipid) giving rise to the slow-motion component is discussed as a function of the polarity of the spin-labelled drug and as a function of the temperature controlling the fluidity of the lipid bulk and influencing the distribution of the drug inside the membrane.  相似文献   

4.
The temperature boundary for phase separation of membrane lipids extracted from Nerium oleander leaves was determined by analysis of spin label motion using electron spin resonance spectroscopy and by analysis of polarization of fluorescence from the probe, trans-parinaric acid. A discontinuity of the temperature coefficient for spin label motion, and for trans-parinaric acid fluorescence was detected at 7°C and −3°C with membrane lipids from plants grown at 45°C/32°C (day/night) and 20°C/15°C, respectively. This change was associated with a sharp increase in the polarization of fluorescence from trans-parinaric acid indicating that significant domains of solid lipid form below 7°C or −3°C in these preparations but not above these temperatures. In addition, spin label motion indicated that the lipids of plants grown at low temperatures are more fluid than those of plants grown at higher temperatures.

A change in the molecular ordering of lipids was also detected by analysis of the separation of the hyperfine extrema of electron spin resonance spectra. This occurred at 2°C and 33°C with lipids from the high and low temperature grown plants, respectively. According to previous interpretation of spin label data the change at 29°C (or 33°C) would have indicated the temperature for the initiation of the phase separation process, and the change at 7°C (or −3°C) its completion. Because of the present results, however, this interpretation needs to be modified.

Differences in the physical properties of membrane lipids of plants grown at the hot or cool temperatures correlate with differences in the physiological characteristics of plants and with changes in the fatty acid composition of the corresponding membrane lipids. Environmentally induced modification of membrane lipids could thus account, in part, for the apparently beneficial adjustments of physiological properties of this plant when grown in these regimes.

  相似文献   

5.
6.
M E Johnson 《Biochemistry》1979,18(2):378-384
Practical techniques are demonstrated for determining rotational correlation times of macromolecules from the first harmonic absorption electron spin reasonance spectra of tightly bound spin labels. The techniques are developed to compensate for such nonideal conditions as residual label motion, temperature dependence of rigid limit spectral parameters, and the presence of inhomogeneous line broadening. These effects are all shown to be of importance in monitoring the rotational motion of carbonmonoxyhemoglobin which is spin labeled with the tightly bound nitroxide label, 4-maleimido-2,2,6,6-tetramethylpiperidinyl-1-oxy. Spin-label interactions with other paramagnetic agents are also shown to produce spectral changes which are qualitatively similar to, but quantitatively different from, those resulting from increases in the rate of rotational motion.  相似文献   

7.
The orientation and restricted motion of the cholestane spin label (3-spiro-doxyl-5α-cholestane) incorporated into planar multibilayers of diacyldigalactosyldiglycerides extracted from the thylakoid membranes of chloroplasts from different plant leaves has been studied. The experimental ESR spectra were simulated in terms of the slow-tumbling ESR formalism of Freed and co-workers (Polnaszek, C.F., Bruno, G.V. and Freed, J.H. (1973) J. Chem. Phys. 58, 3185–3199). The analysis shows that the degree of orientational order is low. The spin label molecules undergo a faster reorientational motion about their long molecular axes than perpendicular to them. At room temperature the reorientational rate around the long molecular axis falls within the fast-motional limit, while the reorientation rate of the long axis itself corresponds to the slow-tumbling regime. The results indicate that the motion of the labels in bilayers of diacyldigalactosyldiglycerides is considerably slower than that of the same label incorporated into bilayers of saturated phosphatidylcholines above the main phase transition. Differences between bilayers of diacyldigalactosyldiglycerides extracted from different plant membranes have been observed.  相似文献   

8.
Sarcoplasmic reticular vesicles were prepared from both lobster and rabbit muscle. A variety of water-soluble, lipid-soluble, and alkylating spin labels were used to treat the sarcoplasmic reticular vesicles. All spin label analyses were carried out with and without NiCl2. Nickel is used to remove spin label signal originating from outside of, on the surface of, or localized in the outermost part of the outer bilayer half of the sarcoplasmic reticular membrane.We conclude that the hydrocarbon portion of sarcoplasmic reticular vesicles has symmetry in regard to the physical properties that limit spin label motion; however, we find that the membrane interface limits spin label motion more on the inner surface than the outer surface and that the trapped aqueous volume which is sampled by water soluble spin labels inside the vesicle enclosure limits spin label motion much more than the average aqueous medium outside.  相似文献   

9.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

10.
Interactions between starch, water and stable nitroxide radicals were studied by electron spin resonance. The motional properties of TEMPO, 4-(2-bromoacetamido) TEMPO (BrAcTEMPO), 5-DOXYL-stearic acid and 16-DOXYL-stearic acid probes as well as a label covalently attached to amylopectin were investigated in concentrated (10–50%) starch-water systems as a function of temperature, concentration of polymer and storage period. Compared with the free probes in solution, TEMPO and BrAcTEMPO showed slower tumbling rates in starch-water dispersions or gels, suggesting a higher microviscosity in the probe's environment. The spectra, however, remained motionally narrowed. In contrast, the three line spectra of the fatty acid probes in solution became highly anisotropic in the presence of starch. The results indicated that these probes were highly immobilized at room temperature by the starch granules or by the polysaccharide gel matrix. These interactions are weakened at elevated temperatures where the spectra revealed the presence of both motionally narrowed and motionally slowed spin populations. The nitroxide label on the amylopectin exhibited a much slower mobility than the corresponding free probe as well as being found to be more motionally sensitive to temperature changes; such motional behavior was interpreted as reflecting contributions from rotation of the label around the chain backbone as well as local segmental motion of the polymer chain itself. Starch gels doped with free probes or the spin labelled amylopectin displayed no change in the motion of the nitroxide group upon storage, i.e. the tumbling rates did not follow the time-dependent conformational changes associated with the retrogradation phenomenon.  相似文献   

11.
M E Johnson 《Biochemistry》1978,17(7):1223-1228
The spin label Tempo-maleimide, when "immobilized" in hemoglobin, is shown to exhibit motional fluctuation whose amplitude and/or frequency depend on temperature and solution conditions. These motional fluctuations are observable by several electron spin resonance techniques. For desalted hemoglobin the fluctuations are detectable at approximately -15 degrees C using saturation transfer techniques and at approximately +25 degrees C using line-width measurements of normal absorption spectra. In ammonium sulfate precipitated hemoglobin, however, motional fluctuations are not detectable by either technique up to at least 40 degrees C. The most probable mechanism for spin-label motion appears to be either fluctuations in protein conformation which affect the label binding site or conformational transitions of the nitroxide ring itself. These motional fluctuations are shown to introduce a librational character to the overall label motion during hemoglobin rotational diffusion, with the librational motion significantly affecting the use of spin-label spectral shapes to calculate hemoglobin rotational correlation times.  相似文献   

12.
The Ca2(+)-ATPase in native sarcoplasmic reticulum membranes was selectively spin-labeled for saturation transfer electron spin resonance (ESR) studies by prelabeling with N-ethylmaleimide and by using low label/protein ratios. Results with the nitroxide derivative of the standard sulphydryl-modifying reagent, maleimide, were compared with a series of six novel nitroxide beta-substituted vinyl aryl ketone derivatives which differed (with two exceptions) in the substituent at the ketone position. The two exceptions had a different electron withdrawing group at the alpha-carbon, to enhance further the electrophilic character of the beta-carbon. Although differing in their reactivity, all the conjugated unsaturated ketone nitroxide derivatives displayed saturation transfer ESR spectra indicative of much slower motion than did the maleimide derivative. The saturation transfer ESR spectra of maleimide-labeled Ca2(+)-ATPase therefore most likely contain substantial contributions from segmental motion of the labeled group. The effects of the level of spin labeling were also investigated. With increasing degree of spin label incorporation, the linewidths of the conventional ESR spectrum progressively increased and the intensity of the saturation transfer spectrum dropped dramatically, as a result of increasing spin-spin interactions. The hyperfine splittings of the conventional spectrum and the outer lineheight ratios of the saturation transfer spectrum remained relatively unchanged. Extrapolation back to zero labeling level yielded comparable values for the effective rotational correlation times deduced from the saturation transfer spectrum intensities and from the lineheight ratios, for the vinyl ketone label. For the maleimide label the extrapolated values from the integral are significantly lower than those from the lineheight ratios, probably because of the segmental motion. Comparison is made of the effective rotational correlation time for the vinyl ketone label with the predictions of hydrodynamic models for the protein diffusion, in a discussion of the aggregation state of the Ca2(+)-ATPase in the native sarcoplasmic reticulum membrane. The implications for the study of protein rotational diffusion and segmental motion, and of the proximity relationships between labeled groups, using saturation transfer ESR spectroscopy are discussed.  相似文献   

13.
Behavior of spin labels in a variety of interdigitated lipid bilayers   总被引:2,自引:0,他引:2  
The behavior of a number of spin labels in several lipid bilayers, shown by X-ray diffraction to be interdigitated, has been compared in order to evaluate the ability of the spin label technique to detect and diagnose the structure of lipid bilayers. The main difference between interdigitated and non-interdigitated gel phase bilayers which can be exploited for determination of their structure using spin labels, is that the former have a much less steep fluidity gradient. Thus long chain spin labels with the nitroxide group near the terminal methyl of the chain, such as 16-doxylstearic acid, its methyl ester, or a phosphatidylglycerol spin label containing 16-doxylstearic acid (PG-SL), are more motionally restricted and/or ordered in the interdigitated bilayer than in the non-interdigitated bilayer. This difference is large enough to be of diagnostic value for all three spin labels in the interdigitated bilayers of dihexadecylphosphatidylcholine, dipalmitoylphosphatidylcholine/ethanol, and 1,3-dipalmitoylphosphatidylcholine. However, it is not large enough to be of diagnostic value at low temperatures. Use of probes with the nitroxide group closer to the apolar/polar interface reveals that these latter interdigitated bilayers are more disordered or less closely packed. As the temperature is increased, however, the motion of the PG-SL does not increase as much in these interdigitated bilayers as in non-interdigitated bilayers. The difference in the motion and/or order of PG-SL between interdigitated and non-interdigitated bilayers is large enough at higher temperatures to be of value in diagnosing the structure of the bilayers. Thus by choice of a suitable spin label and a suitable temperature, this technique should prove useful for detection and diagnosis of lipid bilayer structure with a good degree of reliability. Caution must, of course be exercised, as with any spectroscopic technique. Spin labels will also be invaluable for more detailed studies of known interdigitated bilayers, which would be time- and material-consuming, if carried out using X-ray diffraction solely.  相似文献   

14.
The structure of the chromaffin granule membrane has been probed using a number of different spin labels. Both the effect of temperature and high levels of calcium have been studied. 1. The results from three positional isomers of the stearic acid spin label demonstrate that a substantial part of the membrane lipid (that is sensed by the probe) is in a bilayer structure which undergoes a structural transition at 32-36 degrees C, characterized by an increase in the population of gauche isomers in the lipid chains. A possible mechanism for this transition would be the preferential segregation of cholesterol. 2. The covalently bound iodoacetamide spin label reveals a transition within the protein component of the membrane or its immediate lipid environment at 32 degrees C. This transition corresponds to an increased degree of motional freedom of the spin label above the transition temperature. 3. The lipid-soluble spin label 2,2,6,6-tetramethyl-piperidine-1-oxyl exhibits a break at 34 degrees C in the temperature-dependence of its partitioning into the membrane. This could correspond to the onset of a lateral separation in the membrane lipid, again possible involving a re-distribution of cholesterol. 4. Calcium abolishes, diminishes or shifts the transition observed by the spin label and decreases the amplitude of motion of the stearic acid spin labels, again possibly involving a redistribution of cholesterol and also lysolecithin. The temperatures of the structural transition agree well with the changes in the enzymic activity of the membrane ATPase and NADH oxidase functions and also with the results from fluorescent probes [Bashford et al., Eur. J. Biochem. 67, 105-114(1976)]. It is possible that triggering of the transition either by calcium or some other stimulus may play a role in catecholamine release and membrane fusion.  相似文献   

15.
Viscosity, temperature and ionic strength dependences of ESR microwave saturation parameters of spin labelled human oxyhemoglobin (Hb) and bovine serum albumin (BSA) have been studied. The piperidine and pyrrolidine nitroxyl derivatives of maleimide were used as covalent SH reagents for Hb and BSA and the same two derivatives of gamma-benzocarboline and spin labelled stearic acid were used as noncovalent spin probes for BSA. The effects of label binding tightness on ESR spectral parameters were considered. The rotational correlation times were determined using viscosity dependences of the separation of the outer hyperfine extrema and Stokes extrapolations at high viscosities. The ESR microwave saturation parameters of the spin labels were shown to depend just weakly on temperature (at constant eta/t) over the range 0-25 degrees and on g, A values but to be sensitive to protein rotational correlation times up to 10(-4) sec and also to the rotational anisotropy and to the relative motion of the spin label.  相似文献   

16.
Kroncke BM  Horanyi PS  Columbus L 《Biochemistry》2010,49(47):10045-10060
Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed α-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i ± 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact with the protein surface. Combined, the results provide a starting point for determining a motional model for R1 on membrane proteins, allowing quantification of nitroxide dynamics in the aliphatic environment of detergent and lipids. In addition, initial contributions to a rotamer library of R1 on membrane proteins are provided, which will assist in reliably modeling the R1 conformational space for pulsed dipolar EPR and NMR paramagnetic relaxation enhancement distance determination.  相似文献   

17.
The rotational motion of an ouabain spin label with sheep kidney Na,K-ATPase has been measured by electron paramagnetic resonance (EPR) and saturation transfer EPR (ST-EPR) measurements. Spin-labelled ouabain binds with high affinity to the Na,K-ATPase with concurrent inhibition of ATPase activity. Enzyme preparations retain 0.61 ± 0.1 mol of bound ouabain spin label per ATPase β dimer. The conventional EPR spectrum of the ouabain spin label bound to the ATPase consists almost entirely (> 99%) of a broad resonance which is characteristic of a strongly immobilized spin label. ST-EPR measurements of the spin labelled ATPase preparations yield effective correlation times for the bound labels of 209 ± 11 μs at 0°C and 44 ± 4 μs at 20°C. These rotational correlation times most likely represent the motion of the protein itself rather than the independent motion of mobile spin probes relative to a slower moving protein. Additional ST-EPR measurements with glutaraldehyde-crosslinked preparations indicated that the observed rotational correlation times predominantly represented the motion of entire Na,K-ATPase-containing membrane fragments, rather than the motion of individual monomeric or dimeric polypeptides within the membrane fragment. The strong immobilization of the ouabain spin label will make it an effective paramagnetic probe of the extracellular surface of the Na,K-ATPase for a variety of NMR and EPR investigations.  相似文献   

18.
Cooke, A., Collison, D, Mabbs, F. E. and Earnshaw, M. J. 1985.Cation-induced changes in the membrane fluidity of isolatedcorn mitochondria as determined by nitroxide spin labels.—J.exp Bot. 36: 1799–1808. The addition of Ca2– or La3+ to non-energized corn mitochondria,with incorporated spin labels, results in an increase in 2Tuof the membrane surface label I (12, 3) and an increase in ofthe membrane core label 1(1, 14). These results indicate a decreasein the motion of the label within the mitochondrial membranes. Decreasing the temperature also increases the 2Tu and torque;of I (12, 3)- and I (1, 14)-labelled corn mitochondria respectively.This suggests that a fall in temperature acts similarly to theaddition of cations in that the freedom of motion of spin labelsin the membrane is limited. Comparing the temperature-inducedchanges in label motion to those of Ca2+ implies that the membranecore is more sensitive to Ca2+ -induced changes in motion thanis the surface. A survey of a range of multivalent cations suggests that theireffect on spin label motion is largely non-specific and probablydue to cation binding. Key words: Calcium, mitochondria, membranes, fluidity  相似文献   

19.
The effect of cholesterol on the membrane fluidity of human erythrocytes has been studied by electron spin resonance (ESR) spectroscopy, sensing the motion of androstane and fatty acid spin labeles in the cell membrane and in vesicles made from extracted phospholipids. 1. Androstane spin label (ASL) was incorporated from ASL-containing phospholipid vesicles into the erythrocyte membrane, essentially by a partition mechanism in proportion to their phospholipid contents. 2. On increasing the cholesterol or ASl content in the cell membrane, the spin label was gradually immobilized. 3. ASL motion in the cell membrane seemed to be primarily determined by the cholesterol/phospholipid molar ratio, regardless of the membrane protein-lipid interaction, as judged from the temperature effects on the ESR spectra of both membranes. 4. However, glutaraldehyde pretreatment induced considerable changes of the cholesterol-lipid interaction in the cell membrane, i.e., strong immobilization and cluster formation of ASL were observed.  相似文献   

20.
Electron paramagnetic resonance employing a lipid-specific spin label has been used to investigate the molecular effects of endotoxin on the physical state of bilayer lipids in rat erythrocyte membranes. When added at a concentration as low as 40 μg/ml to whole blood (plasma plus leukocytes present), decreased membrane lipid motion was found in subsequently washed and spin-labeled intact erythrocytes (P < 0.02). However, if endotoxin were added to washed, plasma plus leukocyte-free intact erythrocytes, no change in the motion of the spin label was found, suggesting that plasma-soluble substances and/or leukocytes are required to produce the change in the physical state of lipids. The decreased lipid motion found in these studies is discussed with reference to the known decreased deformability of endotoxin-treated red cells and to the pathogenesis of sepsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号