首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Several families of evolutionarily conserved axon guidance cues orchestrate the precise wiring of the nervous system during embryonic development. The remarkable plasticity of freshwater planarians provides the opportunity to study these molecules in the context of neural regeneration and maintenance. Here we characterize a homologue of the Slit family of guidance cues from the planarian Schmidtea mediterranea. Smed-slit is expressed along the planarian midline, in both dorsal and ventral domains. RNA interference (RNAi) targeting Smed-slit results in the collapse of many newly regenerated tissues at the midline; these include the cephalic ganglia, ventral nerve cords, photoreceptors, and the posterior digestive system. Surprisingly, Smed-slit RNAi knockdown animals also develop morphologically distinguishable, ectopic neural structures near the midline in uninjured regions of intact and regenerating planarians. These results suggest that Smed-slit acts not only as a repulsive cue required for proper midline formation during regeneration but that it may also act to regulate the behavior of neural precursors at the midline in intact planarians.  相似文献   

2.
3.
4.
5.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
The function of simple prototypic eyes in two planarian species, the two ocular Girardia tigrina and the multiocular Polycelis tenuis, has been studied. When exposed to light, planarians display the light avoidance reaction known as negative phototaxis. This reaction has been investigated in intact animals and in head and tail fragments after their section in the course of eye regeneration. Specific features of the phototaxis reaction have been described in all groups of animals. The differences in light response recovery were shown between two planarian species and two regenerating fragments. No correlation between phototaxic reactions and the restoration of the eye structure, the number of eyes, the maturation of ganglion, the growth of regenerative blastema, and motor system has been found. The phototaxic response occurred two days after the recovery of the morphology of eyes and their connection with the brain. The participation of conserved and novel genes in early development of the eye function is discussed.  相似文献   

8.
The function of simple eyes in two planarian species, two-eyed Girardia tigrina and multi-eyed Polycelis tenuis, has been studied. When exposed to light, planarians display a light avoidance reaction known as negative phototaxis. This reaction has been investigated in intact animals and in head and tail fragments in the course of eye regeneration after their section. Specific features of the phototaxis reaction have been described in all groups of animals. The differences in light response recovery were shown between two planarian species and two regenerating fragments. No correlation has been found between phototactic reactions and restoration of eye structure, the number of eyes, maturation of the ganglion, growth of regenerative blastema, and motor system. The phototactic response occurred two days after the recovery of the morphology of eyes and their connection with the brain. The participation of conserved and novel genes in early development of the eye function is discussed.  相似文献   

9.
Planarians represent an excellent model to study the processes of body axis and organ re-specification during regeneration. Previous studies have revealed a conserved role for the bone morphogenetic protein (BMP) pathway and its intracellular mediators Smad1/5/8 and Smad4 in planarian dorsoventral (DV) axis re-establishment. In an attempt to gain further insight into the role of this signalling pathway in planarians, we have isolated and functionally characte-rized the inhibitory Smads (I-Smads) in Schmidtea mediterranea. Two I-Smad homologues have been identified: Smed-smad6/7-1 and Smed-smad6/7-2. Expression of smad6/7-1 was detected in the parenchyma, while smad6/7-2 was found to be ex-pressed in the central nervous system and the eyes. Neither single smad6/7-1 and smad6/7-2 nor double smad6/7-1,-2 silencing gave rise to any apparent disruption of the DV axis. However, both regenerating and intact smad6/7-2 (RNAi) planarians showed defects in eye morphogenesis and displayed small, rounded eyes that lacked the anterior subpopulation of photoreceptor cells. The number of pigment cells was also reduced in these animals at later stages of regeneration. In contrast, after low doses of Smed-bmp(RNAi), planarians regenerated larger eyes in which the anterior subpopulation of photoreceptor cells was expanded. Our results suggest that Smed-smad6/7-2 and Smed-bmp control the re-specification and maintenance of anterior photoreceptor cell number in S. mediterranea.  相似文献   

10.
The strong regenerative capacity of planarians is considered to reside in the totipotent somatic stem cell called the 'neoblast'. However, the signal systems regulating the differentiation/growth/migration of stem cells remain unclear. The fibroblast growth factor (FGF)/FGF receptor (FGFR) system is thought to mediate various developmental events in both vertebrates and invertebrates. We examined the molecular structures and expression of DjFGFR1 and DjFGFR2, two planarian genes closely related to other animal FGFR genes. DjFGFR1 and DjFGFR2 proteins contain three and two immunoglobulin-like domains, respectively, in the extracellular region and a split tyrosine kinase domain in the intracellular region. Expression of DjFGFR1 and DjFGFR2 was observed in the cephalic ganglion and mesenchymal space in intact planarians. In regenerating planarians, accumulation of DjFGFR1-expressing cells was observed in the blastema and in fragments regenerating either a pharynx or a brain. In X-ray-irradiated planarians, which had lost regenerative capacity, the number of DjFGFR1-expressing cells in the mesenchymal space decreased markedly. These results suggest that the DjFGFR1 protein may be involved in the signal systems controlling such aspects of planarian regeneration as differentiation/growth/migration of stem cells.  相似文献   

11.
Photoreception is one of the most primitive sensory functions in metazoans. Despite the diversity of forms and components of metazoan eyes, many studies have demonstrated the existence of a common cellular and molecular basis for their development. Genes like pax6, sine oculis, eyes absent, dachshund, otx, Rx and atonal are known to be associated with the specification and development of the eyes. In planarians, sine oculis, eyes absent and otxA play an essential role during the formation of the eye after decapitation, whereas pax6, considered by many authors as a master control gene for eye formation, does not seem to be involved in adult eye regeneration. Whether this is a peculiarity of adult planarians or, on the contrary, is also found in embryogenesis remains unknown. Herein, we characterize embryonic eye development in the planarian species Schmidtea polychroa using histological sections and molecular markers. Additionally, we analyse the expression pattern of the pax6sine oculiseyes absentdachshund network, and the genes Rx, otxA, otxB and atonal. We demonstrate that eye formation in planarian embryos shows great similarities to adult eye regeneration, both at the cellular and molecular level. We thus conclude that planarian eyes exhibit divergent molecular patterning mechanisms compared to the prototypic ancestral metazoan eye.  相似文献   

12.
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.  相似文献   

13.
Regeneration and negative phototaxis were studied in planarians Polycelis tenuis, in which the anterior body end is fringed with many eyes. Comparative data for the same indices are given for binocular planarians Girardia tigrina. Multiple eyes regenerated gradually with a decrease in the rate of regeneration and independently from the rate of restoration of the anterior body end, where they are located. Negative phototaxis was restored independently from the total amount of regenerated eyes. It was unstable in both planarian species.  相似文献   

14.
Regeneration and negative phototaxis were studied in planarians Polycelis tenuis, in which the anterior body end is fringed with many eyes. Comparative data for the same indices are given for binocular planarians Girardia tigrina. Multiple eyes regenerated gradually with a decrease in the rate of regeneration and independently from the rate of restoration of the anterior body end, where they are located. Negative phototaxis was restored independently from the total amount of regenerated eyes. It was unstable in both planarian species.  相似文献   

15.
The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo.During regeneration,stem ceils (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body.However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively.Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1).In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vaseular system.Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation.In Djrho2-RNAi planarians, smaller anterior blaste-mas were observed in tail fragments during regeneration.Consistently, defective regeneration of visual nerve was detected by immu-nostainning with VC-1 antibody.These results suggested that Djrho2 is required for proper anterior regeneration in planairan.In contrast,no abnormality was observed after RNAi of Djrho3.We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach.Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional elec-trophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis.Among them, 6 actin-binding or cy-toskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.  相似文献   

16.
Planarians are free-living aquatic flatworms that possess a well-documented photophobic response to light. With a true central nervous system and simple cerebral eyes (ocelli), planarians are an emerging model for regenerative eye research. However, comparatively little is known about the physiology of their photoreception or how their behavior is affected by various wavelengths. Most phototactic studies have examined planarian behavior using white light. Here, we describe a novel planarian behavioral assay to test responses to small ranges of visible wavelengths (red, blue, green), as well as ultraviolet (UV) and infrared (IR) which have not previously been examined. Our data show that planarians display behavioral responses across a range of wavelengths. These responses occur in a hierarchy, with the shortest wavelengths (UV) causing the most intense photophobic responses while longer wavelengths produce no effect (red) or an apparent attraction (IR). In addition, our data reveals that planarian photophobia is comprised of both a general photophobic response (that drives planarians to escape the light source regardless of wavelength) and wavelength-specific responses that encompass specific behavioral reactions to individual wavelengths. Our results serve to improve the understanding of planarian phototaxis and suggest that behavioral studies performed with white light mask a complex behavioral interaction with the environment.  相似文献   

17.
Koinuma S  Umesono Y  Watanabe K  Agata K 《Gene》2000,259(1-2):171-176
We have isolated a planarian Forkhead box A (FoxA, a new name for a gene group containing HNF3 alpha,beta,gamma)-related gene, DjFoxA, and examined its spatial and temporal distribution in both intact and regenerating planarians by in situ hybridization. In intact worms, DjFoxA is specifically expressed in the cells participating in pharynx development in the region surrounding the pharynx, which is located in the central portion of the body. During regeneration, DjFoxA-positive cells appear in the pharynx-forming region and migrate to the midline to form a pharynx rudiment. These results suggest that DjFoxA is specifically expressed in the cells participating in pharynx formation and has an evolutionarily conserved function in digestive tract formation.  相似文献   

18.
Inbreeding of the sexualized planarian, Dugesia ryukyuensis, produces eye-defective worms, menashi, in the F1 population. To study the effects of this mutation on the eye, we observed the eye-region of menashi using electron microscopy and compared it with the regenerating eye in wild-type worms. The intact eye of wild-type planarians consisted of a few pigment cells and a number of visual cells. Pigment cells containing spherically-shaped electron-dense melanosomes contacted each other and enclosed rhabdomes of visual cells. Rhabdomes had numerous tubular microvilli extending radially and touching the pigment cells. However, in menashi, various lengths of tubular microvilli were irregularly distributed near the pigment cells, which contained numerous electron-lucent premelanosomes, and no adhesive structures were found between the pigment cells. The premelanosomes of menashi were equal in size to those seen after 2 days of regeneration in wild-type planarians and were similar in maturation to those found after 3 days of regeneration in wild-type planarian. These results suggest that menashi is defective in the mechanism(s) of developing pigment granules and constructing visual cells. These findings also suggest that pigment cells in menashi are defective in the mechanism(s) involved with cell adhesion.  相似文献   

19.
The effects of natural methylmercury compounds on regeneration of photoreceptor organs were studied in three freshwater planarians: Polycelis tenuis, Dugesia lugubris, and D. tigrina. Accumulation of methyl mercury in the planarian body suppressed regeneration of P. tenuis with numerous photoreceptor organs to a greater extent than in two other planarians that have only two eyes. High methyl mercury concentrations inhibited the restoration of photoreceptor organs in asexual and sexual D. tigrina races.  相似文献   

20.
The remarkable capability of planarian regeneration is mediated by a group of adult stem cells referred to as neoblasts. Although these cells possess many unique cytological characteristics (e.g. they are X-ray sensitive and contain chromatoid bodies), it has been difficult to isolate them after cell dissociation. This is one of the major reasons why planarian regenerative mechanisms have remained elusive for a long time. Here, we describe a new method to isolate the planarian adult stem cells as X-ray-sensitive cell populations by fluorescence-activated cell sorting (FACS). Dissociated cells from whole planarians were labeled with fluorescent dyes prior to fractionation by FACS. We compared the FACS profiles from X-ray-irradiated and non-irradiated planarians, and thereby found two cell fractions which contained X-ray-sensitive cells. These fractions, designated X1 and X2, were subjected to electron microscopic morphological analysis. We concluded that X-ray-sensitive cells in both fractions possessed typical stem cell morphology: an ovoid shape with a large nucleus and scant cytoplasm, and chromatoid bodies in the cytoplasm. This method of isolating X-ray-sensitive cells using FACS may provide a key tool for advancing our understanding of the stem cell system in planarians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号