共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Exit of thiomethylgalactoside (TMG) from preloaded cells induced the accumulation of proline. Likewise, proline exit stimulated TMG accumulation. Since a proton ionophore (carbonylcyanide-m-chlorophenylhydrazone) abolished these effects, a protonmotive force was implicated as the "intermediate" in the coupling reaction. The evidence suggests that the exit of TMG resulted in proton exit, which produced either a membrane potential (inside negative or a pH gradient (outside acid) or both. This inwardly directed protonmotive force provided the energy for proline entry and accumulation. Thus the energy coupling was not via a common transport protein but by proton movements which coupled the two separate H+-dependent transport processes. 相似文献
3.
An artificially produced electrochemical potential difference for protons (portonmotive force) provided the energy for the transport of galactosides in Escherichia coli cells which were depleted of their endogenous energy reserves. The driving force for the entry of protons was provided by either a transmembrane pH gradient or a membrane potential. The pH gradient across the membrane was created by acidifying the external medium. The membrane potential (inside negative) was established by the outward diffusion of potassium (in the presence of valinomycin) or by the inward diffusion of the permeant thiocyanate ion. The magnitude of the electrochemical potential difference for protons agreed well with magnitude of the chemical potential difference of the lactose analog, thiomethylgalactoside. The observations are consistent with the view that the carrier-mediated entry of each galactoside molecule is accompanied by the entry of one proton. 相似文献
4.
Energy coupling to net K+ transport in Escherichia coli K-12. 总被引:24,自引:0,他引:24
Energy coupling for three K+ transport systems of Escherichia coli K-12 was studied by examining effects of selected energy sources and inhibitors in strains with either a wild type or a defective (Ca2+, Mg2+)-stimulated ATPase. This approach allows discrimination between transport systems coupled to the proton motive force from those coupled to the hydrolysis of a high energy phosphate compound (ATP-driven). The three K+ transport systems here studied are: (a) the Kdp system, a repressible high affinity (Km=2 muM) system probably coded for by four linked Kdp genes; (b) the Trka system, a constitutive system with high rate and modest affinity (Km=1.5 mM) defined by mutations in the single trkA gene; and (c) the TrkF system, a nonsaturable system with a low rate of uptake (Rhoads, D.B., Waters, F.B., and Epstein, W. (1976) J. Gen. Physiol. 67, 325-341). Each of these systems has a different mode of energy coupling: (a) the Kdp system is ATP-driven and has a periplasmic protein component; (b) the TrkF system is proton motive force-driven; and (c) the TrkA system is unique among bacterial transport systems described to date in requiring both the proton motive force and ATP for activity. We suggest that this dual requirement represents energy fueling by ATP and regulation by the proton motive force. Absence of ATP-driven systems in membrane vesicles is usually attributed to the requirement of such systems for a periplasmic protein. This cannot explain the failure to demonstrate the TrkA system in vesicles, since this system does not require a periplasmic protein. Our findings indicate that membrane vesicles cannot couple energy to ATP-driven transport systems. Since vesicles can generate a proton motive force, the inability of vesicles to generate ATP or couple ATP to transport (or both) must be invoked to explain the absence of TrkA in vesicles. The TrkF system should function in vesicles, but its very low rate may make it difficult to identify. 相似文献
5.
Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. 总被引:10,自引:0,他引:10
下载免费PDF全文

The nature of the energy source for phosphate transport was studied in strains of Escherichia coli in which either one of the two major systems (PIT, PST) for phosphate transport was present. In the PIT system, phosphate transport is coupled to the proton-motive force. The energy source for the PST system appears to be phosphate-bond energy, as has been found in other systems involving binding proteins. High concentration gradients of phosphate (between 100 and 500) are established by both systems. 相似文献
6.
The role of protons in the mechanism of galactoside transport via the lactose permease of Escherichia coli 总被引:2,自引:0,他引:2
M G Page 《Biochimica et biophysica acta》1987,897(1):112-126
The kinetic mechanism of lactose transport across the cytoplasmic membrane has been investigated and the results related to standard models for the lactose-H+ symport reaction using computer simulation. It is shown that the biphasic kinetics reported for lactose uptake (Kaczorowski, G.J. and Kaback, H.R. (1979) Biochemistry 18, 3691-3697) are consistent with random binding of lactose and protons and rapid subsequent translocation of the ternary lactose-H+-permease complex. Such a model is also shown to explain the observed dependence of the kinetic parameters on the magnitude of the protonmotive force. Both sugar and protons are shown to cause product inhibition of lactose flux and the ability of standard models to account for the pattern of inhibition is discussed. Three apparent dissociation constants have been determined for the protonation reactions in the external medium: two (pKa 6.3 and 9.6) control the activity of the permease, whilst the third (pKa 8.3) controls the affinity of the permease for galactosides. A similar set of dissociation constants has been determined for the internal reactions. Again two (pKa 6 and 9.8) control activity and a third (pKa 8.8) controls the affinity for galactosides. The dissociation reactions characterised by pKa 8.3, 8.8, 9.6 and 9.8 are attributed to the dissociation of the substrate (symported) proton from the binary proton-permease complexes (pKa 8.3 and 8.8) and the ternary proton-galactoside-permease complexes (pKa 9.6 and 9.8). The third pair (pKa 6.3 and 6.0) must be interpreted as describing a separate protonation reaction which may have a regulatory or auxiliary role in transport. 相似文献
7.
Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport 总被引:10,自引:0,他引:10
The lactose carrier, a galactoside:H+ symporter in Escherichia coli, has been purified from cytoplasmic membranes by pre-extraction of the membranes with 5-sulfosalicylate, solubilization in dodecyl-O-beta-D-maltoside, Ecteola-column chromatography, and removal of residual impurities by anti-impurity antibodies. Subsequently, the purified carrier was reincorporated into E. coli phospholipid vesicles. Purification was monitored by tracer N-[3H]ethylmaleimide-labeled carrier and by binding of the substrate p-nitrophenyl-alpha-D-galactopyranoside. All purified carrier molecules were active in substrate binding and the purified protein was at least 95% pure by several criteria. Substrate binding to the purified carrier in detergent micelles and in reconstituted proteoliposomes yielded a stoichiometry close to one molecule substrate bound per polypeptide chain. Large unilamellar proteoliposomes (1-5-micron diameter) were prepared from initially small reconstituted vesicles by freeze-thaw cycles and low-speed centrifugation. These proteoliposomes catalyzed facilitated diffusion and active transport in response to artificially imposed electrochemical proton gradients (delta mu H+) or one of its components (delta psi or delta pH). Comparison of the steady-state level of galactoside accumulation and the nominal value of the driving gradients yielded cotransport stoichiometries up to 0.7 proton/galactoside, suggesting that the carrier protein is the only component required for active galactoside transport. The half-saturation constants for active uptake of lactose (KT = 200 microM) or beta-D-galactosyl-1-thio-beta-D-galactoside (KT = 50-80 microM) by the purified carrier were found to be similar to be similar to those measured in cells or cytoplasmic membrane vesicles. The maximum rate for active transport expressed as a turnover number was similar in proteoliposomes and cytoplasmic membrane vesicles (kcat = 3-4 s-1 for lactose) but considerably smaller than in cells (kcat = 40-60 s-1). Possible reasons for this discrepancy are discussed. 相似文献
8.
9.
Transport of [3H]melibiose, prepared from [3H]raffinose, was investigated in Escherichia coli. Na+ stimulated the transport of melibiose via the melibiose system, whereas Li+ inhibited it. Kinetic parameters of melibiose transport were determined. The Kt values were 0.57 mM in the absence of Na+ or Li+, 0.27 mM in the presence of 10 mM NaCl, and 0.29 mM in the presence of 10 mM LiCl. The Vmax values were 40 and 46 nmol/min per mg of protein in the absence and in the presence of NaCl and 18 nmol/min per mg of protein in the presence of LiCl. Melibiose transport via the melibiose system was temperature sensitive in a wild-type strain of Escherichia coli and was not inhibited by lactose. On the other hand, melibiose uptake via the lactose system was not temperature sensitive, was inhibited by lactose, and was not affected by Na+ and Li+. Methyl-beta-D-thiogalactoside, a substrate for both systems, inhibited the transport of melibiose via both systems. 相似文献
10.
The function of the stable 6S RNA of Escherichia coli is not known. Recently, it was proposed that the 6S RNA is a component of a bacterial signal recognition particle required for protein secretion. To test this proposal, we isolated a mutant that lacks the 6S RNA. Studies of the mutant show that the 6S RNA is not essential for growth or for protein secretion. The gene for the 6S RNA (ssr) maps near serA at 63 min on the E. coli genetic map. 相似文献
11.
Energy coupling of the hexose phosphate transport system in Escherichia coli 总被引:3,自引:5,他引:3
下载免费PDF全文

H H Winkler 《Journal of bacteriology》1973,116(1):203-209
The active transport of hexose phosphates in Escherichia coli was inhibited by many uncouplers or inhibitors of oxidative metabolism. Fluoride and the lipid soluble cation, triphenylmethylphosphonium, had little effect. The uninduced level of transport was sensitive to fluoride, but not to azide. After energy uncoupling of active transport, the cells could equilibrate their intracellular water with the glucose-6-phosphate in the medium and displayed exit counter-flow suggesting the existence of carrier-mediated transport in the energy-uncoupled cells. The uncoupled transport of glucose-6-phosphate was inhibited by fructose-6-phosphate; the uninduced level of glucose-6-phosphate transport was not inhibited by fructose-6-phosphate. After energy uncoupling, the influx had a low affinity suggesting that, unlike the transport of beta-galactosides, the energy coupling for the active transport of hexose phosphate involved a change in the affinity of influx. 相似文献
12.
J K Wright 《Biochimica et biophysica acta》1986,855(3):391-416
To determine the kinetic mechanism of galactoside active transport by the lactose/H+ cotransporter of Escherichia coli, galactoside binding and transport are studied in the absence and presence of delta mu H+. For several reasons, the substrate beta-D-galactosyl-1-thi-beta-D-galactoside (GalSGal) is preferred over lactose. In the absence of delta mu H+, the cotransporter retains high affinity for GalSGal, and the affinity is the same on both sides of the membrane. At physiological pH, the cotransporter is protonated and the dissociation constant for H+ may be 50 pM. The cosubstrates bind in a random fashion. An isomerization of the cotransporter corresponding to reorientation of the binding sites is rate-determining. When delta mu H+ is imposed, two reorientations become faster, and one becomes slower. The affinity of the cotransporter for GalSGal on both sides of the membrane is unchanged. The inability of the cotransporter to bring the accumulation of galactoside into equilibrium with delta mu H+ at high galactoside concentrations can be explained without postulating uncoupled fluxes of galactoside or H+ across the membrane (leaks). The formation of the ternary carrier-H+-galactoside complex on the cytoplasmic side of the membrane with increasing internal levels of sugar and the rapidity of galactoside exchange inhibit net influx of galactoside and favor exchange. Net transport is slow at high galactoside levels. Thus, the cotransporter can self-regulate transport without uncoupling H+ and galactoside fluxes. Because the values of delta mu H+ during binding and transport studies were measured, these results can be subjected to a quantitative analysis. 相似文献
13.
Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells 总被引:15,自引:0,他引:15
Periplasmic permeases are composed of four proteins, one of which has an ATP-binding site that has been postulated to be involved in energy coupling. Previous data suggested that these permeases derive energy from substrate level phosphorylation (Berger, E. A. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 1514-1518); however, conflicting results later cast doubt upon this hypothesis. Here, we make use of two well characterized periplasmic permeases and of a well characterized unc mutant (ATPase-) to examine this energetics problem in depth. We have utilized the histidine and maltose periplasmic permeases in Escherichia coli as model systems. Isogenic unc strains were used in order to study separately the effect of the proton-motive force and of ATP on transport. These parameters were analyzed concomitantly with transport assays. Starvation experiments indicate that both histidine and maltose transport require ATP generation and that a normal level of delta psi is not sufficient. Uncouplers such as carbonyl cyanide-m-chlorophenylhydrazone and 2,4-dinitrophenol dissipated the delta psi without decreasing the ATP level and without significant effect on these permeases, showing that delta psi is not needed. Inhibition of ATP synthesis by arsenate eliminates transport through both permeases, confirming the need for ATP. In agreement with previous results with the glutamine permease (Plate, C. A. (1979) J. Bacteriol. 137, 221-225), valinomycin plus K+ dissipates delta psi without affecting ATP levels and inhibits histidine transport; however, maltose transport is not inhibited under these conditions. This result is discussed in terms of the artefactual side effects caused by valinomycin/K+ treatment on some periplasmic permeases. Histidine transport is also shown to be sensitive to changes in the cytoplasmic pH. It is concluded that periplasmic permeases indeed have an obligatory requirement for ATP (or a closely related molecule), whereas the proton-motive force is neither sufficient nor essential. 相似文献
14.
The addition of xylose to energy-depleted cells of Escherichia coli elicited an alkaline pH change which failed to appear in the presence of uncoupling agents. Accumulation of [14C]xylose by energy-replete cells was also inhibited by uncoupling agents, but not by fluoride or arsenate. Subcellular vesicles of E. coli accumulated [14C]xylose provided that ascorbate plus phenazine methosulfate were present for respiration, and this accumulation was inhibited by uncoupling agents or valinomycin. Therefore, the transport of xylose into E. coli appears to be energized by a proton-motive force, rather than by a phosphotransferase or directly energized mechanism. Its specificity for xylose as inducer and substrate and the genetic location of a xylose-H+ transport-negative mutation near mtl showed that the xylose-H+ system is distinct from other proton-linked sugar transport systems of E. coli. 相似文献
15.
1. Addition of L-fucose to energy-depleted anaerobic suspensions of Escherichia coli elicited an uncoupler-sensitive alkaline pH change diagnostic of L-fucose/H+ symport activity. 2. L-Galactose or D-arabinose were also substrates, but not inducers, for the L-fucose/H+ symporter. 3. L-Fucose transport into subcellular vesicles was dependent upon respiration, displayed a pH optimum of about 5.5, and was inhibited by protonophores and ionophores. 4. These results showed that L-fucose transport into E. coli was energized by the transmembrane electrochemical gradient of protons. 5. Neither steady state kinetic measurements nor assays of L-fucose binding to periplasmic proteins revealed the existence of a second L-fucose transport system. 相似文献
16.
Localization of the galactoside binding site in the lactose carrier of Escherichia coli 总被引:4,自引:0,他引:4
The location of flurophores specifically bound to the lactose/H+ carrier of Escherichia coli was ascertained by the use of various collisional quenchers. The reporter groups were (1) the pyrenyl residue of N-(1-pyrenyl)maleimide attached to the essential cysteine residue 148, which is presumably at or near the galactoside binding site, and (2) the dansyl moieties of a series of fluorescent substrate molecules. The accessibility of these fluorophores from the lipid phase was assessed by nitroxyl-labelled fatty acids and phospholipids. By using a series of nitroxyl-labelled fatty acids carrying the quencher at different positions in the acyl chain, the position of a quenchable fluorophore with respect to the membrane normal can be determined. The accessibility of fluophores from the aqueous phase was assessed by using a water-soluble quencher, the N-methylpicolinium ion. The results of quenching studies suggest that the galactoside binding site is located within the carrier and that this binding site communicates with the aqueous phase through a pore. 相似文献
17.
Kinetics of K exchange in the steady state and of net K uptake after osmotic upshock are reported for the four K transport systems of Escherichia coli: Kdp, TrkA, TrkD, and TrkF. Energy requirements for K exchange are reported for the Kdp and TrkA systems. For each system, kinetics of these two modes of K transport differ from those for net K uptake by K-depleted cells (Rhoads, D. B. F.B. Walters, and W. Epstein. 1976. J. Gen. Physiol. 67:325-341). The TrkA and TrkD systems are inhibited by high intracellular K, the TrkF system is stimulated by intracellular K, whereas the Kdp system is inhibited by external K when intracellular K is high. All four systems mediate net K uptake in response to osmotic upshock. Exchange by the Kdp and TrkA systems requires ATP but is not dependent on the protonmotive force. Energy requirements for the Kdp system are thus identical whether measured as net K uptake or K exchange, whereas the TrkA system differs in that it is dependent on the protonmotive force only for net K uptake. We suggest that in both the Kpd and TrkA systems formation of a phosphorylated intermediate is necessary for all K transport, although exchange transport may not consume energy. The protonmotive-force dependence of the TrkA system is interpreted as a regulatory influence, limiting this system to exchange except when the protonmotive force is high. 相似文献
18.
Trehalose metabolism in Escherichia coli is complicated by the fact that cells grown at high osmolarity synthesize internal trehalose as an osmoprotectant, independent of the carbon source, although trehalose can serve as a carbon source at both high and low osmolarity. The elucidation of the pathway of trehalose metabolism was facilitated by the isolation of mutants defective in the genes encoding transport proteins and degradative enzymes. The analysis of the phenotypes of these mutants and of the reactions catalyzed by the enzymes in vitro allowed the formulation of the degradative pathway at low osmolarity. Thus, trehalose utilization begins with phosphotransferase (IITre/IIIGlc)-mediated uptake delivering trehalose-6-phosphate to the cytoplasm. It continues with hydrolysis to trehalose and proceeds by splitting trehalose, releasing one glucose residue with the simultaneous transfer of the other to a polysaccharide acceptor. The enzyme catalyzing this reaction was named amylotrehalase. Amylotrehalase and EIITre were induced by trehalose in the medium but not at high osmolarity. treC and treB encoding these two enzymes mapped at 96.5 min on the E. coli linkage map but were not located in the same operon. Use of a mutation in trehalose-6-phosphate phosphatase allowed demonstration of the phosphoenolpyruvate- and IITre-dependent in vitro phosphorylation of trehalose. The phenotype of this mutant indicated that trehalose-6-phosphate is the effective in vivo inducer of the system. 相似文献
19.
Trileucine is utilized as a source of leucine for growth of strains of Escherichia coli K-12 that are deficient in the oligopeptide transport system (Opp). Trithreonine is toxic to E. coli K-12. Opp- mutants of E. coli K-12 retain complete sensitivity to this tripeptide. Moreover, E. coli W, which is resistant to trithreonine, can utlize this tripeptide as a threonine source and this capability is fully maintained in E. coli W (Opp-). A spontaneous trithreonine-resistant mutant of E. coli K-12 (Opp-) has been isolated that has an impaired growth response to trileucine and is resistant to trithreonine. Trileucine competes with the uptake of trithreonine as measured by its ability to relieve trithreonine toxicity in E. coli K-12. It is concluded that trileucine as well as trithreonine are transported into E. coli K-12 or W by a common uptake system that is distinct from the Opp system. Trimethionine can act as a competitor of trileucine or trithreonine-supported growth and as an antagonist of trithreonine toxicity in Opp- mutants. It is concluded that trimethionine is recognized by the trileucine-trithreonine transport system. Trithreonine, trimethionine, and trileucine are also transported by the Opp system, as they all relieve triornithine toxicity towards E. coli W and compete with tetralysine utilization as lysine source for growth of a lysine auxotroph of this strain. 相似文献
20.
Cobalamin transport in Escherichia coli 总被引:4,自引:0,他引:4
C Bradbeer 《BioFactors (Oxford, England)》1991,3(1):11-19