首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome localization of adeno-associated virus RNA.   总被引:1,自引:6,他引:1       下载免费PDF全文
  相似文献   

2.
Subcellular localization of the simian virus 40 agnoprotein   总被引:14,自引:10,他引:4  
The intracellular distribution of the simian virus 40 agnoprotein in infected cells was determined by indirect immunofluorescence and biochemical fractionation followed by indirect immunoprecipitation. The specific antibodies used in these studies were directed against either purified agnoprotein or a synthetic oligopeptide homologous to the N-terminus of the processed protein. Both procedures showed predominant localization of the agnoprotein to the cytosol and to the perinuclear region in association with the outer nuclear membrane. A minor but detectable fraction of the protein was also found in the nucleus. The definition of its subcellular distribution, as well as its high lability in vivo and affinity for nucleic acid, provide a basis for speculation on the function of this gene product.  相似文献   

3.
African green monkey kidney cells infected by simian virus 40 were analyzed by immunofluorescence techniques for the nature and the time course of the appearance of viral polypeptides during infection. Reagents used in the study were anti-Vpl sera and affinity-purified anti-Vpl immunoglobulin G, anti-Vp3 sera, antivirus (anti-V) sera, and anti-tumor antigen sera. The results are summarized as follows. (i) Three types of staining, nuclear, perinuclear, and perinuclear accompanied by cytoplasmic staining, were observed in infected cells in reaction with anti-vpl antibody. In addition, a highly structured staining was observed at the periphery of nuclei of infected cells late in infection. (ii) In reaction with anti-Vp3 serum, the staining was confined within nuclei of cells throughout infection. (iii) Vp1 and Vp3 antigens seem to occupy different spacial regions of the nuclear area in cells. (iv) Vp1 and Vp3 antigens were expressed simultaneously during infection. (v) Centriolar staining observed early in infection paralleled the appearance of tumor (T-) antigen until 24 h after infection, after which time the frequency of positive centriolar staining decreased as infection progressed. (vi) T-antigen was first expressed at about 8 h after infection, and Vp1 and Vp3 antigens were first expressed at about 20 h after infection.  相似文献   

4.
5.
6.
T antigen was localized in simian virus 40 lytically infected and transformed cells by Fab' antibody conjugates at the ultrastructural level. This virus-specific protein appeared in the cytoplasm of permissive cells as early as 3 h after infection. At later time intervals, the T antigen was localized in both the cytoplasm and nucleus and finally (24 h) in the nucleus. These results suggest a synthesis of T antigen on cytoplasmic ribosomes, with subsequent transfer to the nucleus.  相似文献   

7.
The location of phosphorylation sites in the large T antigen of simian virus 40 has been studied both by partial chemical cleavage and by partial proteolysis of various forms of large T. These included the full-size wild-type molecule with an apparent molecular weight of 88,000, deleted molecules coded for by the mutants dl1265 and dl1263, and several shortened derivatives generated by the action of a cellular protease. These molecules differed from each other by variations in the carboxy-terminal end. In contrast, a ubiquitous but minor large T form with a molecular weight of 91,000 was found to be modified in the amino-terminal half of the molecule. In addition to the phosphorylation of threonine at position 701 (K.-H. Scheidtmann et al., J. Virol. 38:59-69, 1981), two other discrete domains of phosphorylation were recognized, one at either side of the molecule. The amino-terminal region was located between positions 81 and 124 and contained both phosphothreonine and phosphoserine residues. The carboxy-terminal region was located between approximate positions 500 and 640 and contained at least one phosphoserine residue but no phosphothreonine. The presence in the phosphorylated domains of large T of known recognition sequences for different types of protein kinases is discussed, together with possible functions of large T associated with these domains.  相似文献   

8.
9.
Salt-stable association of simian virus 40 capsid with simian virus 40 DNA   总被引:2,自引:0,他引:2  
V Blasquez  M Bina 《FEBS letters》1985,181(1):64-68
In 8 M CsCl, a fraction of the wild-type previrions and tsB228 nucleoprotein complexes lose their core histones but retain their capsid. These histone-depleted complexes appear in the electron microscope as a protein shell attached to supercoiled DNA. Consistent with this result, we find that in 1 M NaCl, the wild-type previrions dissociate into two populations of nucleoprotein complexes. One population sediments between 50 and 140 S and morphologically resembles the shell-DNA complexes isolated in CsCl gradients. The other population is comprised primarily of nucleoproteins which sediment at 40 S.  相似文献   

10.
An immunoprecipitation assay was established for simian virus 40 T-antigen-bound nucleoprotein complexes by means of precipitation with sera from hamsters bearing simian virus 40-induced tumors. About 80% of simian virus 40 replicating nucleoprotein complexes in various stages of replication were immunoprecipitated. In contrast, less than 21% of mature nucleoprotein complexes were immunoprecipitated. Pulse-chase experiments showed that T antigen was lost from most of the nucleoprotein complexes concurrently with completion of DNA replication. T antigen induced by dl-940, a mutant with a deletion in the region coding for small T antigen, was also associated with most of the replicating nucleoprotein complexes. Once bound with replicating nucleoprotein complexes at the permissive temperature, thermolabile T antigen induced by tsA900 remained associated with the complexes during elongation of the replicating DNA chain at the restrictive temperature. These results suggest that simian virus 40 T antigen (probably large T antigen) associates with nucleoprotein complexes at or before initiation of DNA replication and that the majority of the T antigen dissociates from the nucleoprotein complexes simultaneously with completion of DNA replication.  相似文献   

11.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

12.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

13.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

14.
15.
16.
17.
18.
We analyzed large and small species of T-antigen by immunoprecipitation and two-dimensional gel electrophoresis. The T-antigen species were subjected to electrophoresis either directly or after reduction and alkylation with N-ethylmaleimide. Treatment with N-ethylmaleimide improved the resolution of large-T by two-dimensional gel electrophoresis and was a requirement for the resolution of small-t antigen on two dimensional gels. Large-T did not form a discrete protein spot, but rather formed a streak from approximately pH 6.5 to 6.9 on isoelectric focusing gels. Small-t formed a sharp protein spot at approximately pH 7.2 when subjected to electrophoresis under non-equilibrium conditions which extended the pH gradient to include proteins with basic isoelectric points. Treatment with N-ethylmaleimide decreased the mobility of the T-antigen species during sodium dodecyl sulfate gel electrophoresis. We suggest that the apparent increase in molecular weight was due to the association of N-ethylmaleimide with cysteine-rich regions of these proteins. Viable deletion mutants of simian virus 40 which do not induce the synthesis of small-t but product small-t-related polypeptides were used to localize the cysteine-rich region of small-t to between 0.54 and 0.59 on the genetic map of simian virus 40.  相似文献   

19.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

20.
Cell-free synthesis of simian virus 40 T-antigens.   总被引:9,自引:18,他引:9       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号