首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
GDNF is a chemoattractant for enteric neural cells   总被引:13,自引:0,他引:13  
In situ hybridization revealed that GDNF mRNA in the mid- and hindgut mesenchyme of embryonic mice was minimal at E10.5 but was rapidly elevated at all gut regions after E11, but with a slight delay (0.5 days) in the hindgut. GDNF mRNA expression was minimal in the mesentery and in the pharyngeal and pelvic mesenchyme adjacent to the gut. To examine the effect of GDNF on enteric neural crest-derived cells, segments of E11.5 mouse hindgut containing crest-derived cells only at the rostral ends were attached to filter paper supports and grown in catenary organ culture. With GDNF (100 ng/ml) in the culture medium, threefold fewer neurons developed in the gut explants and fivefold more neurons were present on the filter paper outside the gut explants, compared to controls. Thus, in controls, crest-derived cells colonized the entire explant and differentiated into neurons, whereas in the presence of exogenous GDNF, most crest-derived cells migrated out of the gut explant. This is consistent with GDNF acting as a chemoattractant. To test this idea, explants of esophagus, midgut, superior cervical ganglia, paravertebral sympathetic chain ganglia, or dorsal root ganglia from E11.5-E12.5 mice were grown on collagen gels with a GDNF-impregnated agarose bead on one side and a control bead on the opposite side. Migrating neural cells and neurites from the esophagus and midgut accumulated around the GDNF-impregnated beads, but neural cells in other tissues showed little or no chemotactic response to GDNF, although all showed GDNF-receptor (Ret and GFRalpha1) immunoreactivity. We conclude that GDNF may promote the migration of crest cells throughout the gastrointestinal tract, prevent them from straying out of the gut (into the mesentery and pharyngeal and pelvic tissues), and promote directed axon outgrowth.  相似文献   

2.
Shear stress induces endothelial polarization and migration in the direction of flow accompanied by extensive remodeling of the actin cytoskeleton. The GTPases RhoA, Rac1, and Cdc42 are known to regulate cell shape changes through effects on the cytoskeleton and cell adhesion. We show here that all three GTPases become rapidly activated by shear stress, and that each is important for different aspects of the endothelial response. RhoA was activated within 5 min after stimulation with shear stress and led to cell rounding via Rho-kinase. Subsequently, the cells respread and elongated within the direction of shear stress as RhoA activity returned to baseline and Rac1 and Cdc42 reached peak activation. Cell elongation required Rac1 and Cdc42 but not phosphatidylinositide 3-kinases. Cdc42 and PI3Ks were not required to establish shear stress-induced polarity although they contributed to optimal migration speed. Instead, Rho and Rac1 regulated directionality of cell movement. Inhibition of Rho or Rho-kinase did not affect the cell speed but significantly increased cell displacement. Our results show that endothelial cells reorient in response to shear stress by a two-step process involving Rho-induced depolarization, followed by Rho/Rac-mediated polarization and migration in the direction of flow.  相似文献   

3.
Semaphorins and their receptors, plexins, are widely expressed in embryonic and adult tissues. In general, their functions are poorly characterized, but in neurons they provide essential attractive and repulsive cues that are necessary for axon guidance [1-3]. The Rho family GTPases Rho, Rac, and Cdc42 control signal transduction pathways that link plasma membrane receptors to the actin cytoskeleton and thus regulate many actin-driven processes, including cell migration and axon guidance [4-7]. Using yeast two-hybrid screening and in vitro interaction assays, we show that Rac in its active, GTP bound state interacts directly with the cytoplasmic domain of mammalian and Drosophila B plexins. Plexin-B1 clustering in fibroblasts does not cause the formation of lamellipodia, which suggests that Rac is not activated. Instead, it results in the assembly of actin:myosin filaments and cell contraction, which indicates Rho activation. Surprisingly, these cytoskeletal changes are both Rac and Rho dependent. Clustering of a mutant plexin, lacking the Rac binding region, induced similar cytoskeletal changes, and this finding indicates that the physical interaction of plexin-B1 with Rac is not required for Rho activation. Our findings that plexin-B signaling to the cytoskeleton is both Rac and Rho dependent form a starting point for unraveling the mechanism by which semaphorins and plexins control axon guidance and cell migration.  相似文献   

4.
During embryonic development, tangentially migrating precerebellar neurons emit a leading process and then translocate their nuclei inside it (nucleokinesis). Netrin 1 (also known as netrin-1) acts as a chemoattractant factor for neurophilic migration of precerebellar neurons (PCN) both in vivo and in vitro. In the present work, we analyzed Rho GTPases that could direct axon outgrowth and/or nuclear migration. We show that the expression pattern of Rho GTPases in developing PCN is consistent with their involvement in the migration of PCN from the rhombic lips. We report that pharmacological inhibition of Rho enhances axon outgrowth of PCN and prevents nuclei migration toward a netrin 1 source, whereas inhibition of Rac and Cdc42 sub-families impair neurite outgrowth of PCN without affecting migration. We show, through pharmacological inhibition, that Rho signaling directs neurophilic migration through Rock activation. Altogether, our results indicate that Rho/Rock acts on signaling pathways favoring nuclear translocation during tangential migration of PCN. Thus, axon extension and nuclear migration of PCN in response to netrin 1 are not strictly dependent processes because: (1) distinct small GTPases are involved; (2) axon extension can occur when migration is blocked; and (3) migration can occur when axon outgrowth is impaired.  相似文献   

5.
The Rho family GTPases Rac, Rho and Cdc42 are critical in regulating the actin-based cytoskeleton, cell migration, growth, survival and gene expression. These GTPases are activated by guanine nucleotide-exchange factors (GEFs). A biochemical search for Cdc42 activators led to the cloning of zizimin1, a new protein whose overexpression induces Cdc42 activation. Sequence comparison combined with mutational analysis identified a new domain, which we named CZH2, that mediates direct interaction with Cdc42. CZH2-containing proteins constitute a new superfamily that includes the so-called 'CDM' proteins that bind to and activate Rac. Together, the results suggest that CZH2 is a new GEF domain for the Rho family of proteins.  相似文献   

6.
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through alpha 5 beta 1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.  相似文献   

7.
Maintenance of intestinal epithelial barrier functions is crucial to prevent systemic contamination by microbes that penetrate from the gut lumen. GTPases of the Rho-family such as RhoA, Rac1, and Cdc42 are known to be critically involved in the regulation of intestinal epithelial barrier functions. However, it is still unclear whether inactivation or activation of these GTPases exerts barrier protection or not. We tested the effects of Rho GTPase activities on intestinal epithelial barrier functions by using the bacterial toxins cytotoxic necrotizing factor 1 (CNF-1), toxin B, C3 transferase (C3 TF), and lethal toxin (LT) in an in vitro model of the intestinal epithelial barrier. Incubation of cell monolayers with CNF-1 for 3 h induced exclusive activation of RhoA whereas Rac1 and Cdc42 activities were unchanged. As revealed by FITC-dextran flux and measurements of transepithelial electrical resistance (TER) intestinal epithelial permeability was significantly increased under these conditions. Inhibition of Rho kinase via Y27632 blocked barrier destabilization of CNF-1 after 3 h. In contrast, after 24 h of incubation with CNF-1 only Rac1 and Cdc42 but not RhoA were activated which resulted in intestinal epithelial barrier stabilization. Toxin B to inactivate RhoA, Rac1, and Cdc42 as well as Rac1 inhibitor LT increased intestinal epithelial permeability. Similar effects were observed after inhibition of RhoA/Rho kinase signaling by C3 TF or Y27632. Taken together, these data demonstrate that both activation and inactivation of RhoA signaling increased paracellular permeability whereas activation of Rac1 and Cdc42 correlated with stabilized barrier functions.  相似文献   

8.
9.
The Rho GTPases Rac1 and Cdc42 have been implicated in the regulation of axon outgrowth and guidance. However, the downstream effector pathways through which these GTPases exert their effects on axon development are not well characterized. Here, we report that axon outgrowth defects within specific subsets of motoneurons expressing constitutively active Drosophila Rac1 largely persist even with the addition of an effector-loop mutation to Rac1 that disrupts its ability to bind to p21-activated kinase (Pak) and other Cdc42/Rac1 interactive-binding (CRIB)-motif effector proteins. While hyperactivation of Pak itself does not lead to axon outgrowth defects as when Rac1 is constitutively activated, live analysis reveals that it can alter filopodial activity within specific subsets of neurons similar to constitutive activation of Cdc42. Moreover, we show that the axon guidance defects induced by constitutive activation of Cdc42 persist even in the absence of Pak activity. Our results suggest that (1) Rac1 controls axon outgrowth through downstream effector pathways distinct from Pak, (2) Cdc42 controls axon guidance through both Pak and other CRIB effectors, and (3) Pak's primary contribution to in vivo axon development is to regulate filopodial dynamics that influence growth cone guidance.  相似文献   

10.
The transforming growth factor beta (TGFbeta) plays an important role in cell growth and differentiation. However, the intracellular signaling pathways through which TGFbeta inhibits skeletal myogenesis remain largely undefined. By measuring GTP-loading of Rho GTPases and the organization of the F-actin cytoskeleton and the plasma membrane, we analyzed the effect of TGFbeta addition on the activity of three GTPases, Rac1, Cdc42Hs and RhoA. We report that TGFbeta activates Rac1 and Cdc42Hs in skeletal muscle cells, two GTPases previously described to inhibit skeletal muscle cell differentiation whereas it inactivates RhoA, a positive regulator of myogenesis. We further show that TGFbeta activates the C-jun N-terminal kinases (JNK) pathway in myoblastic cells through Rac1 and Cdc42Hs GTPases. We propose that the activation of Rho family proteins Rac1 and Cdc42Hs which subsequently regulate JNK activity participates in the inhibition of myogenesis by TGFbeta.  相似文献   

11.
We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.  相似文献   

12.
The Rho guanosine triphosphatases (GTPases) control cell shape and motility and are frequently overexpressed during malignant growth. These proteins act as molecular switches cycling between active GTP- and inactive GDP-bound forms. Despite being membrane anchored via their isoprenylated C termini, Rho GTPases rapidly translocate between membrane and cytosolic compartments. Here, we show that the Rho GTPase Rac1 preferentially interacts with phosphatidylserine (PS)-containing bilayers through its polybasic motif (PBM). Rac1 isoprenylation contributes to membrane avidity but is not critical for PS recognition. The similar protein Cdc42 (cell division cycle 42), however, only associates with PS when prenylated. Conversely, other Rho GTPases such as Rac2, Rac3, and RhoA do not bind to PS even when they are prenylated. Cell stimulation with PS induces translocation of Rac1 toward the plasma membrane and stimulates GTP loading, membrane ruffling, and filopodia formation. This stimulation also promotes Cdc42 activation and phosphorylation of mitogen-activated protein kinase through Rac1/PS signaling. Consequently, the PBM specifically directs Rac1 to effect cytoskeletal rearrangement and cell migration by selective membrane phospholipid targeting.  相似文献   

13.
Neurons extend neurites from the cell body before formation of the polarized processes of an axon and dendrites. Neurite outgrowth involves remodeling of the cytoskeletal components, which are initially regulated by small GTPases of the Rho family. Here we show that c-Jun N-terminal kinase (JNK), which is controlled by Rho GTPases Rac1 and Cdc42, is activated following neurite extension in mouse N1E-115 neuroblastoma cells as a model. The extension is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) and Clostridium difficile Toxin B, the inhibitor for Rho GTPases. Additionally, paxillin, the multifunctional focal adhesion protein, is phosphorylated at Ser 178 by upregulation of the Rac1/Cdc42/JNK cascade. Conversely, transfection of the paxillin construct harboring the Ser 178-to-Ala mutation into cells inhibits neurite extension. Taken together, these results suggest the novel role of the Rac1/Cdc42/JNK signaling cascade in neurite extension and indicate that the downstream target paxillin may be one of the convergent points of various signaling pathways underlying neurite extension.  相似文献   

14.
Netrins are chemotropic guidance cues that attract or repel growing axons during development. DCC (deleted in colorectal cancer), a transmembrane protein that is a receptor for netrin-1, is implicated in mediating both responses. However, the mechanism by which this is achieved remains unclear. Here we report that Rho GTPases are required for embryonic spinal commissural axon outgrowth induced by netrin-1. Using N1E-115 neuroblastoma cells, we found that both Rac1 and Cdc42 activities are required for DCC-induced neurite outgrowth. In contrast, down-regulation of RhoA and its effector Rho kinase stimulates the ability of DCC to induce neurite outgrowth. In Swiss 3T3 fibroblasts, DCC was found to trigger actin reorganization through activation of Rac1 but not Cdc42 or RhoA. We detected that stimulation of DCC receptors with netrin-1 resulted in a 4-fold increase in Rac1 activation. These results implicate the small GTPases Rac1, Cdc42, and RhoA as essential components that participate in signaling the response of axons to netrin-1 during neural development.  相似文献   

15.
Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation.  相似文献   

16.
The current knowledge assigns a crucial role to the Rho GTPases family (Rho, Rac, Cdc42) in the complex transductive pathway leading to skeletal muscle cell differentiation. Their exact function in myogenesis, however, remains largely undefined. The protein toxin CNF1 was herein employed as a tool to activate Rho, Rac and Cdc42 in the myogenic cell line C2C12. We demonstrated that CNF1 impaired myogenesis by affecting the muscle regulatory factors MyoD and myogenin and the structural protein MHC expressions. This was principally driven by Rac/Cdc42 activation whereas Rho apparently controlled only the fusion process. More importantly, we proved that a controlled balance between Rho and Rac/Cdc42 activation/deactivation state was crucial for the correct execution of the differentiation program, thus providing a novel view for the role of Rho GTPases in muscle cell differentiation. Also, the use of Rho hijacking toxins can represent a new strategy to pharmacologically influence the differentiative process.  相似文献   

17.
18.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

19.
BACKGROUND: The ability of a cell to polarize and move is governed by remodeling of the cellular adhesion/cytoskeletal network that is in turn controlled by the Rho family of small GTPases. However, it is not known what signals lie downstream of Rac1 and Cdc42 during peripheral actin and adhesion remodeling that is required for directional migration. RESULTS: We show here that individual members of the Rho family, RhoA, Rac1, and Cdc42, direct the specific intracellular targeting of c-Src tyrosine kinase to focal adhesions, lamellipodia, or filopodia, respectively, and that the adaptor function of c-Src (the combined SH3/SH2 domains coupled to green fluorescent protein) is sufficient for targeting. Furthermore, Src's catalytic activity is absolutely required at these peripheral cell-matrix attachment sites for remodeling that converts RhoA-dependent focal adhesions into smaller focal complexes along Rac1-induced lamellipodia (or Cdc42-induced filopodia). Consequently, cells in which kinase-deficient c-Src occupies peripheral adhesion sites exhibit impaired polarization toward migratory stimuli and reduced motility. Furthermore, phosphorylation of FAK, an Src adhesion substrate, is suppressed under these conditions. CONCLUSIONS: Our findings demonstrate that individual Rho GTPases specify Src's exact peripheral localization and that Rac1- and Cdc42-induced adhesion remodeling and directed cell migration require Src activity at peripheral adhesion sites.  相似文献   

20.
Peripheral glial cells in both vertebrates and insects are born centrally and travel large distances to ensheathe axons in the periphery. There is very little known about how this migration is carried out. In other cells, it is known that rearrangement of the Actin cytoskeleton is an integral part of cell motility, yet the distribution of Actin in peripheral glial cell migration in vivo has not been previously characterized. To gain an understanding of how glia migrate, we specifically labeled the peripheral glia of Drosophila melanogaster using an Actin-GFP marker and analyzed their development in the embryonic PNS. It was found that Actin cytoskeleton is dynamically rearranged during glial cell migration. The peripheral glia were observed to migrate as a continuous chain of cells, with the leading glial cells appearing to participate to the greatest extent in exploring the extracellular surroundings with filopodia-like Actin containing projections. We hypothesized that the small GTPases Rho, Rac and Cdc42 are involved in Actin cytoskeletal rearrangements that underlie peripheral glial migration and nerve ensheathement. To test this, transgenic forms of the GTPases were ectopically expressed specifically in the peripheral glia during their migration and wrapping phases. The effects on glial Actin-GFP distribution and the overall effects on glial cell migration and morphological development were assessed. We found that RhoA and Rac1 have distinct roles in peripheral glial cell migration and nerve ensheathement; however, Cdc42 does not have a significant role in peripheral glial development. RhoA and Rac1 gain-of-function and loss-of-function mutants had both disruption of glial cell development and secondary effects on sensory axon fasciculation. Together, Actin cytoskeletal dynamics is an integral part of peripheral glial migration and nerve ensheathement, and is mediated by RhoA and Rac1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号