首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) present an attractive alternative to primary EC sources for vascular grafting. However, there is a need to mature them towards either an arterial or venous subtype. A vital environmental factor involved in the arteriovenous specification of ECs during early embryonic development is fluid shear stress; therefore, there have been attempts to employ adult arterial shear stress conditions to mature hPSC-ECs. However, hPSC-ECs are naïve to fluid shear stress, and their shear responses are still not well understood. Here, we used a multiplex microfluidic platform to systematically investigate the dose-time shear responses on hPSC-EC morphology and arterial-venous phenotypes over a range of magnitudes coincidental with physiological levels of embryonic and adult vasculatures. The device comprised of six parallel cell culture chambers that were individually linked to flow-setting resistance channels, allowing us to simultaneously apply shear stress ranging from 0.4 to 15 dyne/cm 2. We found that hPSC-ECs required up to 40 hr of shear exposure to elicit a stable phenotypic change. Cell alignment was visible at shear stress <1 dyne/cm 2, which was independent of shear stress magnitude and duration of exposure. We discovered that the arterial markers NOTCH1 and EphrinB2 exhibited a dose-dependent increase in a similar manner beyond a threshold level of 3.8 dyne/cm 2, whereas the venous markers COUP-TFII and EphB4 expression remained relatively constant across different magnitudes. These findings indicated that hPSC-ECs were sensitive to relatively low magnitudes of shear stress, and a critical level of ~4 dyne/cm 2 was sufficient to preferentially enhance their maturation into an arterial phenotype for future vascular tissue engineering applications.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号