首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein arginine N‐methyltransferase (PRMT) dimerization is required for methyl group transfer from the cofactor S‐adenosyl‐L ‐methionine (AdoMet) to arginine residues in protein substrates, forming S‐adenosyl‐L ‐homocysteine (AdoHcy) and methylarginine residues. In this study, we use Förster resonance energy transfer (FRET) to determine dissociation constant (KD) values for dimerization of PRMT1 and PRMT6. By attaching monomeric Cerulean and Citrine fluorescent proteins to their N‐termini, fluorescent PRMTs are formed that exhibit similar enzyme kinetics to unconjugated PRMTs. These fluorescent proteins are used in FRET‐based binding studies in a multi‐well format. In the presence of AdoMet, fluorescent PRMT1 and PRMT6 exhibit 4‐ and 6‐fold lower dimerization KD values, respectively, than in the presence of AdoHcy, suggesting that AdoMet promotes PRMT homodimerization in contrast to AdoHcy. We also find that the dimerization KD values for PRMT1 in the presence of AdoMet or AdoHcy are, respectively, 6‐ and 10‐fold lower than the corresponding values for PRMT6. Considering that the affinity of PRMT6 for AdoHcy is 10‐fold higher than for AdoMet, PRMT6 function may be subject to cofactor‐dependent regulation in cells where the methylation potential (i.e., ratio of AdoMet to AdoHcy) is low. Since PRMT1 affinity for AdoMet and AdoHcy is similar, however, a low methylation potential may not affect PRMT1 function.  相似文献   

2.
A validated simple and sensitive spectrofluorimetric method was developed for the determination of chlorpromazine hydrochloride, promethazine hydrochloride, trifluperazine hydrochloride, thioridazine hydrochloride, perazine maleate and oxomemazine. The method was based on condensation of malonic acid/acetic anhydride (MAA) under the catalytic effect of the tertiary amine moiety of the studied phenothiazines to provide a deep yellow to brown colour with green florescence. Relative fluorescence intensity of the products was measured at λexc 398 nm and λem 432 nm. Different variables affecting the reaction were studied and optimized. The method was successfully applied for the determination of the studied drugs in commercial dosage forms. The lower detection limits allowed the application of this method for the determination of the compounds in plasma as an example of a biological fluid. In addition, the method was considered specific for the determination of tertiary amines in the presence of primary and secondary amines; as a result, it was deemed suitable for the determination of the cited drugs in the presence of their degradation products resulting from N‐dealkylation or oxidation of the corresponding sulphoxides or sulphones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Energy transfer (ET) in phycobilisomes, a macrocomplex of phycobiliproteins and linker proteins, is a process that is difficult to understand completely. A model for a rod composed of two hexamers of Phycocyanin and two hexamers of Phycoerythrin was built using an in silico approach and the three‐dimensional structures of both phycobiliproteins from Gracilaria chilensis. The model was characterized and showed 125 Å wide and 230 Å high, which agree with the dimensions of a piling of four hexamers as observed in the images of subcomplexes of phycobilisomes obtained by transmission electron microscopy. ET rates between every pair of chromophores in the model were calculated using the Förster approach, and the fastest rates were selected to draw preferential ET pathways along the rod. Every path indicates that the ET is funneled toward the chromophores located at Cysteines 82 in Phycoerythrin and 84 in Phycocyanin. The chromophores that face the exterior of the rod are phycoerythrobilins, and they also show a preferential ET toward the chromophores located at the center of the rod. The values calculated, in general, agree with the experimental data reported previously, which validates the use of this experimental approach.  相似文献   

4.
The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5–13(C10A) and full-length BNP1–32 with the dissociation constants 0.26 ± 0.01 and 0.05 ± 0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs = 1.9 and 3.8) of the nonfluorescent FRET acceptor, KD values of 0.04 ± 0.02 and , respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded KD values of 1.26 ± 0.04, 1.25 ± 0.05, and 1.14 ± 0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies.  相似文献   

5.
Pantoprazole is used as an anti-ulcer drug through inhibition of H(+), K(+)-adenosine 5(')-triphosphatase in gastric parietal cells. It reduces the gastric acid secretion regardless of the nature of stimulation. The use of differential pulse voltammetry for the determination of pantoprazole in pharmaceutical dosage forms and human plasma using a glassy carbon electrode has been examined. The best voltammetric response was reached for a glassy carbon electrode in Britton-Robinson buffer solution of pH 5.0 submitted to a scan rate of 20.0 mVs(-1) and a pulse amplitude of 50.0 mV. This electroanalytical procedure was able to determine pantoprazole in the concentration range 6.0 x 10(-6)-8.0 x 10(-4)M. Precision and accuracy of the developed method was checked with recovery studies. The limit of detection and limit of quantitation were found to be 4.0 x 10(-7) and 9.0 x 10(-7)M, respectively. Rapidity, precision, and good selectivity were also found for the determination of pantoprazole in pharmaceutical dosage forms and human plasma. For comparative purposes high-performance liquid chromatography with a diode array and UV/VIS detection at 290.0 nm determination also was developed.  相似文献   

6.
Ensemble Förster resonance energy transfer (FRET) results can be analyzed in a variety of ways. Due to experimental artifacts, the results obtained from different analysis approaches are not always the same. To determine the optimal analysis approach to use for Nanodrop fluorometry, we have performed both ensemble and single-molecule FRET studies on oligomers of double-stranded DNA. We compared the single-molecule FRET results with those obtained using various ensemble FRET analysis approaches. This comparison shows that for Nanodrop fluorometry, analyzing the increase of the acceptor fluorescence is less likely to introduce errors in estimates of FRET efficiencies compared with analyzing the fluorescence intensity of the donor in the absence and presence of the acceptor.  相似文献   

7.
Novel, selective, facile, and precise spectroscopic approaches were validated to determine nilotinib hydrochloride, a tyrosine kinase inhibitor used to treat patients with chronic myeloid leukemia. These approaches depend on the reaction of the tertiary amine group of nilotinib with erythrosine B in the Britton–Robinson buffer at pH 4. Method I, depends on measuring the absorbance of the formed complex at 551 nm. The absorbance concentration plot showed linearity over the concentration range of 1.0 to 9.0 μg/ml. Method II, involved the measurement of the quenching of the native fluorescence of erythrosine B by adding nilotinib in an acidic medium. The fluorescence quenching of erythrosine B was measured at 549 nm after excitation at 528 nm. This approach showed excellent linearity in the concentration range of 0.04 to 0.7 μg/ml. The limit of detection values for Method I and Method II were 0.225 and 0.008 μg/ml, respectively, while the limit of quantitation values for Method I and Method II were 0.68 and 0.026 μg/ml, respectively. To get the optimal conditions, factors that may affect the formation of the ion-pairing complex were thoroughly examined. The two approaches were carefully validated following the International Conference of Harmonization (ICH Q2R1) guidelines. Statistical assessment of the results achieved using the suggested and previously published comparison approaches showed no significant difference. The approaches were successful in determining nilotinib in a pharmaceutical dosage form as well as spiked human plasma samples. The eco-friendly properties of the methods were evaluated by three different tools.  相似文献   

8.
Terbium‐acetylacetone (Tb–acac) composite nanoparticles were synthesized using the ultrasonic method. The nanoparticles are water‐soluble, stable and have extremely narrow emission bands and high internal quantum efficiencies. They were used as fluorimetric probes in the determination of salicylic acid (SA), based on the fluorescence enhancement of nanoparticles through fluorescence resonance energy transfer (FRET). The influence of buffer solution was investigated. Under the optimum conditions, a linear calibration graph was obtained over the SA concentration range 5 × 10–7–1 × 10–4 mol/L. The limit of detection was found to be 2.5 × 10–8 mol/L. The relative standard deviation (RSD) for six repeated measurements of 1 × 10–4 mol/LSA was 1.75%. The method was applied to the determination of SA in pharmaceutical formulations and human plasma. We believe that the proposed approach has great potential for clinical purposes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Pippi (phosphatidyl inositol phosphate indicator) is a biosensor based on the principle of FRET (Förster resonance energy transfer), which consists of a pair of fluorescent proteins, CFP (cyan fluorescent protein) and YFP (yellow fluorescent protein), the PH domain sandwiched between them, and K-Ras C-terminal sequence for plasma membrane localization. Due to marked cross-excitation of YFP with the conditions used to excite CFP, initial FRET images obtained by TPE (two-photon excitation) microscopy suffered from low signal-to-noise ratio, hampering the observation of lipids in three-dimensional structures. To solve this problem, YFP and CFP in the original Pippi-PI(3,4)P2 was replaced by sREACh (super resonance energy accepting chromoprotein) and mTFP1 (monomeric teal fluorescent protein), respectively. The biosensor was also fused with an internal control protein, mKeima, where Keima/mTFP1 indicates the FRET efficiency, and indeed epidermal growth factor stimulation increased Keima/mTFP1 in HeLa cells. This biosensor successfully showed PI(3,4)P2 accumulation to the lateral membrane in the MDCK cyst cultured in a three-dimensional environment. Furthermore, other FRET-based biosensors for PIP3 distribution and for tyrosine kinase activity were developed based on this method, suggesting its broad application for visualizing signal transduction events with TPE microscopy.  相似文献   

10.
The in vivo high‐throughput screening (HTS) of human immunodeficiency virus (HIV) protease inhibitors is a significant challenge because of the lack of reliable assays that allow the visualization of HIV targets within living cells. In this study, we developed a new molecular probe that utilizes the principles of Förster resonance energy transfer (FRET) to visualize HIV‐1 protease inhibition within living cells. The probe is constructed by linking two fluorescent proteins: AcGFP1 (a mutant green fluorescent protein) and mCherry (a red fluorescent protein) with an HIV‐1 protease cleavable p2/p7 peptide. The cleavage of the linker peptide by HIV‐1 protease leads to separation of AcGFP1 from mCherry, quenching FRET between AcGFP1 and mCherry. Conversely, the addition of a protease inhibitor prevents the cleavage of the linker peptide by the protease, allowing FRET from AcGFP1 to mCherry. Thus, HIV‐1 protease inhibition can be determined by measuring the FRET signal's change generated from the probe. Both in vitro and in vivo studies demonstrated the feasibility of applying the probe for quantitative analyses of HIV‐1 protease inhibition. By cotransfecting HIV‐1 protease and the probe expression plasmids into 293T cells, we showed that the inhibition of HIV‐1 protease by inhibitors can be visualized or quantitatively determined within living cells through ratiometric FRET microscopy imaging measurement. It is expected that this new probe will allow high‐content screening (HCS) of new anti‐HIV drugs. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

11.
A spectrofluorimetric method for the determination of eptifibatide is presented based on its native fluorescence. The type of solvent and the wavelength of maximum excitation and emission were carefully selected to optimize the experimental conditions. Under the specified experimental conditions, the linearities obtained between the emission intensity and the corresponding concentrations of eptifibatide were in the range 0.1–2.5 μg/ml for the calibration curve constructed for direct determination of eptifibatide in dosage form and 0.05–2.2 μg/ml for the calibration curve constructed in spiked human plasma with a good correlation coefficient (r > 0.99). The lower limit of quantification for the calibration curve constructed in human plasma was 0.05 μg/ml. Recovery results for eptifibatide in spiked plasma samples and in dosage form, represented as mean ± % RSD, were 95.17 ± 1.94 and 100.29 ± 1.33 respectively. The suggested procedures were validated according to the International Conference on Harmonization (ICH) guidelines for the direct determination of eptifibatide in its pure form and dosage form and United States Food and Drug Administration (US FDA) Guidance for Industry, Bioanalytical Method Validation for the assay of eptifibatide in human plasma.  相似文献   

12.
Förster resonant energy transfer (FRET) measurements are widely used to obtain information about molecular interactions and conformations through the dependence of FRET efficiency on the proximity of donor and acceptor fluorophores. Fluorescence lifetime measurements can provide quantitative analysis of FRET efficiency and interacting population fraction. Many FRET experiments exploit the highly specific labelling of genetically expressed fluorescent proteins, applicable in live cells and organisms. Unfortunately, the typical assumption of fast randomization of fluorophore orientations in the analysis of fluorescence lifetime‐based FRET readouts is not valid for fluorescent proteins due to their slow rotational mobility compared to their upper state lifetime. Here, previous analysis of effectively static isotropic distributions of fluorophore dipoles on FRET measurements is incorporated into new software for fitting donor emission decay profiles. Calculated FRET parameters, including molar population fractions, are compared for the analysis of simulated and experimental FRET data under the assumption of static and dynamic fluorophores and the intermediate regimes between fully dynamic and static fluorophores, and mixtures within FRET pairs, is explored. Finally, a method to correct the artefact resulting from fitting the emission from static FRET pairs with isotropic angular distributions to the (incorrect) typically assumed dynamic FRET decay model is presented.   相似文献   

13.
We report a fluorescence resonance energy transfer (FRET) system in which the fluorescent donor is fluorescein isothiocyanate (FITC) dye and the fluorescent acceptor is CdTe quantum dot (QDs). Based on FRET quenching theory, we designed a method to detect the concentration of silver ions (Ag+). The results revealed a good linear trend over Ag+ concentrations in the range 0.01–8.96 nmol/L, a range that was larger than with other methods; the quenching coefficient is 0.442. The FRET mechanism and physical mechanisms responsible for dynamic quenching are also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A reliable, sensitive, cheap and non‐extractive spectrofluorimetric method has been developed and validated for determination of thioridazine and flupentixol based on ternary complex formation with eosin and lead(II) in the presence of methylcellulose as surfactant at pH 3.2. Under the optimum conditions, the quantitative quenching effect of investigated drugs on the native fluorescence of eosin has been investigated. The quenching of the eosin fluorescence was measured at 517 nm after excitation at 462 nm. The different experimental parameters affecting the development and stability of the reaction products were carefully studied and optimized, and the results were satisfactory. The calibration plots were constructed over the range of 0.5–3.0 µg mL?1. The developed method was successfully applied for determination of investigated drugs in commercial tablets without interference from common excipients. It was further applied for content uniformity testing of flupentixol in its tablets. Statistical comparisons of the results with those of the reference methods revealed excellent agreement and indicated no significant difference in accuracy and precision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Chunchuan Gu 《Luminescence》2017,32(7):1186-1191
The development of advanced methods for accurately monitoring cell apoptosis has extensive significance in the diagnostic and pharmaceutical fields. In this study, we developed a rapid, sensitive and selective approach for the detection of cell apoptosis by combining the site‐specific recognition and cleavage of the DEVD–peptide with quantum dots (QDs)‐based fluorescence resonance energy transfer (FRET). Firstly, biotin‐peptide was conjugated on the surface of AuNPs to form AuNPs‐pep through the formation of an Au‐S bond. Then, AuNPs–pep–QDs nanoprobe was obtained through the connection between AuNPs–pep and QDs. FRET is on and the fluorescence of QDs is quenched at this point. The evidence of UV–vis spectra, transmission electron microscopy (TEM), and Fourier transform infrared (FT‐IR) spectroscopy revealed that the connection was successful. Upon the addition of apoptosis cell lysis solution, peptide was cleaved by caspase‐3, and AuNPs was dissociated from the QDs. At this time, FRET is off, and thus the QDs fluorescence was recovered. The experimental conditions were optimized in terms of ratio of peptide to AuNPs, buffer solution, and the temperature of conjugation and enzyme reaction. The biosensor was successfully applied to distinguishing apoptosis cells and normal cells within 2 h. This study demonstrated that the biosensor could be utilized to evaluate anticancer drugs.  相似文献   

16.
Physical binding‐mediated organic dye direct‐labelling of proteins could be a promising technology for bio‐nanomedical applications. Upon binding, it was found that fluorescence resonance energy transfer (FRET) occurred between donor bovine serum albumin (BSA; an amphiphilic protein) and acceptor fluoresceinamine (FA; a hydrophobic fluorophore), which could explain fluorescence quenching found for BSA. FRET efficiency and the distance between FA and BSA tryptophan residues were determined to 17% and 2.29 nm, respectively. Using a spectroscopic superimposition method, the saturated number of FAs that bound to BSA was determined as eight to give a complex formula of FA8–BSA. Finally, molecular docking between BSA and FA was conducted, and conformational change that occurred in BSA upon binding to FA molecules was also studied by three‐dimensional fluorescence microscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this study, 573 nm quantum dots (QDs)-rabbit IgG-goat anti-rabbit IgG-638 nm QDs immunocomplexes were prepared, utilizing antigen-antibody interaction. 573 nm-emitting QDs were conjugated to antigen (rabbit IgG) and 638 nm-emitting QDs were conjugated to antibody (goat anti-rabbit IgG) via electrostatic/hydrophilic self-assembly, respectively. The mutual affinity of the antigen and antibody brought two kinds of QDs close enough to result in fluorescence resonance energy transfer (FRET) between them; the luminescence emission of 573 nm QDs was quenched, while that of 638 nm QDs was enhanced. The luminescence emission of 573 nm QDs could be recovered when the immunocomplexes were exposed to the unlabelled rabbit IgG antigen. The FRET efficiency (E) and the distance between the donor and the acceptor were calculated.  相似文献   

18.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
生物学中荧光共振能量转移的研究应用进展   总被引:5,自引:0,他引:5  
荧光共振能量转移(FRET)可用于对生物大分子之间的距离进行定性、定量检测,所采用的材料、方法在近年都有了很大的发展,在核酸、蛋白质、细胞器结构功能检测、免疫测定、配体-受体相互作用测定等方面都有巧妙而有效的应用,应用前景十分广阔。  相似文献   

20.
Human M1 muscarinic receptor chimeras were designed (i) to allow detection of their interaction with the fluorescent antagonist pirenzepine labelled with Bodipy [558/568], through fluorescence resonance energy transfer, (ii) to investigate the structure of the N-terminal extracellular moiety of the receptor and (iii) to set up a fluorescence-based assay to identify new muscarinic ligands. Enhanced green (or yellow) fluorescent protein (EGFP or EYFP) was fused, through a linker, to a receptor N-terminus of variable length so that the GFP barrel was separated from the receptor first transmembrane domain by six to 33 amino-acids. Five fluorescent constructs exhibit high expression levels as well as pharmacological and functional properties superimposable on those of the native receptor. Bodipy-pirenzepine binds to the chimeras with similar kinetics and affinities, indicating a similar mode of interaction of the ligand with all of them. From the variation in energy transfer efficiencies determined for four different receptor-ligand complexes, relative donor (EGFP)-acceptor (Bodipy) distances were estimated. They suggest a compact architecture for the muscarinic M1 receptor amino-terminal domain which may fold in a manner similar to that of rhodopsin. Finally, this fluorescence-based assay, prone to miniaturization, allows reliable detection of unlabelled competitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号