首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of high‐performance oxygen reduction reaction (ORR) catalysts derived from non‐Pt group metals (non‐PGMs) is urgent for the wide applications of proton exchange membrane fuel cells (PEMFCs). In this work, a facile and cost‐efficient supramolecular route is developed for making non‐PGM ORR catalyst with atomically dispersed Fe‐Nx/C sites through pyrolyzing the metal‐organic polymer coordinative hydrogel formed between Fe3+ and α‐L‐guluronate blocks of sodium alginate (SA). High‐angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) and X‐ray absorption spectroscopy (XAS) verify that Fe atoms achieve atomic‐level dispersion on the obtained SA‐Fe‐N nanosheets and a possible fourfold coordination with N atoms. The best‐performing SA‐Fe‐N catalyst exhibits excellent ORR activity with half‐wave potential (E1/2) of 0.812 and 0.910 V versus the reversible hydrogen electrode (RHE) in 0.5 m H2SO4 and 0.1 m KOH, respectively, along with respectable durability. Such performance surpasses that of most reported non‐PGM ORR catalysts. Density functional theory calculations suggest that the relieved passivation effect of OH* on Fe‐N4/C structure leads to its superior ORR activity to Pt/C in alkaline solution. The work demonstrates a novel strategy for developing high‐performance non‐PGM ORR electrocatalysts with atomically dispersed and stable M‐Nx coordination sites in both acidic and alkaline media.  相似文献   

2.
Baker's yeast (Saccharomyces cerevisiae) cells were magnetically modified with magnetic iron oxide particles prepared by microwave irradiation of iron(II) sulfate at high pH. The modification procedure was very simple and fast. Both non‐cross‐linked and glutaraldehyde cross‐linked magnetic cells enabled efficient sucrose conversion into glucose and fructose, due to the presence of active intracellular invertase. The prepared magnetic whole‐cell biocatalyst was stable; almost the same catalytic activity was observed after 1‐month storage at 4°C. Simple magnetic separation and stability of the developed biocatalyst enabled its reusability without significant loss of enzyme activity.

Significance and Impact of the Study

Magnetic whole yeast cell biocatalyst containing intracellular invertase in its natural environment has been prepared. Magnetic properties enable its easy separation from reaction mixture. Magnetically modified Saccharomyces cerevisiae cells have been used for invert sugar production, hydrolysing sucrose into glucose and fructose. The described magnetization procedure employing microwave‐synthesized iron oxide microparticles is a low‐cost and easy‐to‐perform alternative to already existing magnetization techniques.  相似文献   

3.
Microbial fuel cell (MFC) can generate electricity from organic substances based on anodic electrochemically active microorganisms and cathodic oxygen reduction reaction (ORR), thus exhibiting promising potential for harvesting electric energy from organic wastewater. The ORR performance is crucial to both power production efficiency and overall cost of MFC. A new type of metal‐organic‐framework‐derived electrocatalysts containing cobalt and nitrogen‐doped carbon (CoNC) is developed, which is effective to enhance activity, selectivity, and stability toward four‐electron ORR in pH‐neutral electrolyte. When glucose is used as the substrate, the maximum power density of 1665 mW m?2 is achieved for the optimized CoNC pyrolyzed at 900 °C, which is 39.8% higher than that of 1191 mW m?2 for commercial Pt/C catalyst in the single‐chamber MFC. The improved performance of CoNC catalyst can be attributed to large surface area, microporous nature, and the involvement of nitrogen‐coordinated cobalt species. These properties enable the efficient ORR by increasing the active sites and enhancing mass transfer of oxygen and protons at “water‐flooding” three‐phase boundary where ORR occurs. This work provides a proof‐of‐concept demonstration of a noble‐metal‐free high‐efficiency and cost‐effective ORR electrocatalyst for effective recovery of electricity from biomass materials and organic wastewater in MFC.  相似文献   

4.
Conventional fuel cells are based on rigid electrodes, limiting their applications in wearable and implantable electronics. Here, it is demonstrated that enokitake‐like vertically‐aligned standing gold nanowires (v‐AuNWs) can also serve as powerful platform for stretchable fuel cells by using ethanol as model system. Unlike traditional fuel cell electrodes, the v‐AuNWs have “Janus Morphology” on both sides of the film and also are highly stretchable. The comparative studies demonstrate that tail side exposed v‐AuNWs based stretchable electrodes outperform the head‐side exposed v‐AuNWs toward the electro‐oxidation of ethanol due to the direct exposure of high‐surface‐area nanowires to the fuels. Therefore, a stretchable fuel cell is fabricated utilizing tail side based interdigitated electrodes, where v‐AuNWs and Pt black modified v‐AuNWs serve as the anode and cathode, respectively. The as‐prepared stretchable fuel cell exhibits good overall performance, including high power density, current density, open‐circuit voltage, stretchability, and durability. Most importantly, a wearable fuel cell is also achieved by integrating tattoo‐like interdigitated electrodes with a thin layer of sponge as a fuel container, exhibiting good performance under various deformations (compression, stretching, and twisting). Such attractive performance in conjunction with skin‐like in‐plane design indicates its great potential to power the next‐generation of wearable and implantable devices.  相似文献   

5.
Aucore/Ptshell–graphene catalysts (G‐Cys‐Au@Pt) are prepared through chemical and surface chemical reactions. Au–Pt core–shell nanoparticles (Au@Pt NPs) covalently immobilized on graphene (G) are efficient electrocatalysts in low‐temperature polymer electrolyte membrane fuel cells. The 9.5 ± 2 nm Au@Pt NPs with atomically thin Pt shells are attached on graphene via l ‐cysteine (Cys), which serves as linkers controlling NP loading and dispersion, enhancing the Au@Pt NP stability, and facilitating interfacial electron transfer. The increased activity of G‐Cys‐Au@Pt, compared to non‐chemically immobilized G‐Au@Pt and commercial platinum NPs catalyst (C‐Pt), is a result of (1) the tailored electron transfer pathways of covalent bonds integrating Au@Pt NPs into the graphene framework, and (2) synergetic electronic effects of atomically thin Pt shells on Au cores. Enhanced electrocatalytic oxidation of formic acid, methanol, and ethanol is observed as higher specific currents and increased stability of G‐Cys‐Au@Pt compared to G‐Au@Pt and C–Pt. Oxygen reduction on G‐Cys‐Au@Pt occurs at 25 mV lower potential and 43 A gPt?1 higher current (at 0.9 V vs reversible hydrogen electrode) than for C–Pt. Functional tests in direct fomic acid, methanol and ethanol fuel cells exhibit 95%, 53%, and 107% increased power densities for G‐Cys‐Au@Pt over C–Pt, respectively.  相似文献   

6.
7.
Carbon‐supported precious metal single‐atom catalysts (PM SACs) have shown promising application in proton exchange membrane fuel cells (PEMFCs). However, the coordination principle of the active site, consisting of one PM atom and several coordinating anions, is still unclear for PM SACs. Here, a sequential coordination method is developed to dope a large amount of PM atoms (Ir, Rh, Pt and Pd) into a zeolite imidazolate framework (ZIF), which are further pyrolyzed into nitrogen‐coordinated PM SACs. The PM loadings are as high as 1.2–4.5 wt%, achieving the highest PM loadings in ZIF‐derived SACs to date. In the acidic half‐cell, Ir1‐N/C and Rh1‐N/C exhibit much higher oxygen reduction reaction (ORR) activities than nanoparticle catalysts Ir/C and Rh/C. In the contrast, the activities of Pd1‐N/C and Pt1‐N/C are considerably lower than Pd/C and Pt/C. Density function theory (DFT) calculations reveal that the ORR activity of PM SAC depends on the match between the OH* adsorption on PM and the electronegativity of coordinating anions, and the stronger OH* adsorption is, the higher electronegativity is needed for the coordinating anions. PEMFC tests confirm the active‐site coordination principle and show the extremely high atomic efficiency of Ir1‐N/C. The revealed principle provides guidance for designing future PM SACs for PEMFCs.  相似文献   

8.
The interface between the catalyst layer (CL) and the polymer electrolyte membrane (PEM) in a fuel cell has substantial impact on its electrochemical performance. In consequence, there have been growing research activities to engineer this interface to improve the performance of polymer electrolyte membrane fuel cells (PEMFCs). This review summarizes these novel approaches and compares the various techniques. Based on available fuel cell data in the literature, a quantitative comparison of relative improvements due to a micro‐ and nano‐engineered PEM|CL interface is provided. This allows several conclusions: First, regardless of the applied method, a re‐engineering of the PEM|CL interface leads to an improvement of power‐determining parameters, such as mass transport resistances. The latter has hitherto not been clearly connected to the PEM|CL interface and is an important piece of information for future fuel cell development. Second, for patterned membrane surfaces, feature sizes of about 1–10 µm on the membrane surface seem to result in the most significant power density improvement. Third, an engineered PEMCL interface can contribute to extend the fuel cell durability due to enhanced adhesion and contact between the two layers. With this, novel membrane electrode assemblies (MEAs) can be designed that enable significantly higher power densities compared conventional 2D‐layer MEAs.  相似文献   

9.
An advanced multifuelled solid oxide fuel cell (ASOFC) with a functional nanocomposite was developed and tested for use in a polygeneration system. Several different types of fuel, for example, gaseous (hydrogen and biogas) and liquid fuels (bio‐ethanol and bio‐methanol), were used in the experiments. Maximum power densities of 1000, 300, 600, 550 mW cm?2 were achieved using hydrogen, bio‐gas, bio‐methanol, and bio‐ethanol, respectively, in the ASOFC. Electrical and total efficiencies of 54% and 80% were achieved using the single cell with hydrogen fuel. These results show that the use of a multi‐fuelled system for polygeneration is a promising means of generating sustainable power.  相似文献   

10.
Organic solar cells (OSCs) containing non‐fullerene acceptors have realized high power conversion efficiency (PCE) up to 14%. However, most of these high‐performance non‐fullerene OSCs have been reported with optimal active layer thickness of about 100 nm, mainly due to the low electron mobility (≈10?4–10?5 cm2 V?1 s?1) of non‐fullerene acceptors, which are not suitable for roll‐to‐roll large‐scale processing. In this work, an efficient non‐fullerene OSC based on poly[(5,6‐difluoro‐2,1,3‐benzothiadiazol‐4,7‐diyl)‐alt‐(3,3′″‐di(2‐octyldodecyl)‐2,2′;5′,2″;5″,2′″‐quaterthiophen‐5,5′′′‐diyl)] (PffBT4T‐2OD):EH‐IDTBR (consists of electron‐rich indaceno[1,2‐b:5,6‐b′]dithiophene as the central unit and an electron‐deficient 5,6‐benzo[c][1,2,5]thiadiazole unit flanked with rhodanine as the peripheral group) with thickness‐independent PCE (maintaining a PCE of 9.1% with an active layer thickness of 300 nm) is presented by optimizing device architectures to overcome the space‐charge effects. Optical modeling reveals that most of the incident light is absorbed near the transparent electrode side in thick‐film devices. The transport distance of electrons with lower mobility will therefore be shortened when using inverted device architecture, in which most of the excitons are generated close to the cathode side and therefore substantially reduces the accumulation of electrons in the device. As a result, an efficient thick‐film non‐fullerene OSC is realized. These results provide important guidelines for the development of more efficient thick‐film non‐fullerene OSCs.  相似文献   

11.
Aims: To assess the biodiversity of a large number of microbial fuel cell (MFC) anodes from a variety of MFC designs, all enriched with domestic wastewater, using a molecular fingerprinting method. Methods and Results: We optimized a protocol allowing the rapid characterization of MFC communities using terminal restriction fragment length polymorphism (T‐RFLP) with two different sets of primers and a varying number of restriction enzymes. This protocol was further validated by direct comparison with bacterial clone libraries. Twenty‐one MFC anodes were analysed by T‐RFLP. We also provided a statistical comparison with other bacterial communities from environments sharing common features. Conclusions: Bacterial communities were dominated by β‐Proteobacteria, mostly belonging to the Burkholderiales order, that are known to play an active role in the cycle of metals such as iron and manganese. This property may allow them to properly pass electrons to the anode of an MFC. Significance and Impact of the Study: Unlike other groups, β‐Proteobacteria have seldom been acknowledged as potentially efficient electrochemically active bacteria (EAB) in MFCs. Yet, they are plentiful in natural environments like biocorrosion biofilms and acid mine drainages that consequently show some potential for MFC enrichment.  相似文献   

12.
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell.  相似文献   

13.
Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large‐scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon‐based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor‐based integration strategy where corrugation architecture enables ultraflexible and low‐cost solar cell modules from bulk monocrystalline large‐scale (127 × 127 cm2) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 µm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon‐based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 µm of the back contacts is shown that carries the solar cells segments.  相似文献   

14.
This work introduces a novel silver composite cathode with a surface coating of scandia‐stabilized zirconia (ScSZ) nanoparticles for application in intermediate temperature solid oxide fuel cells (IT‐SOFCs). The ScSZ coating is expected to maximize the triple boundary area of the Ag electrode, ScSZ electrolyte, and oxygen gas, where the oxygen reduction reaction occurs. The coating also protects the porous Ag against thermal agglomeration during fuel cell operation. The ScSZ nanoparticles are prepared by sputtering scandium‐zirconium alloy followed by thermal oxidation on Ag mesh. The performance of the solid oxide fuel cells with a gadolinia‐doped ceria electrolyte support is evaluated. At temperatures <500 °C, our optimized Ag‐ScSZ cathode outperforms the bare Ag cathode and even the platinum cathode, which has been believed to be the best material for this purpose. The highest cell peak power with the Ag‐ScSZ cathode is close to 60 mW cm?2 at 450 °C, while bare Ag and optimized Pt cathodes produce 38.3 and 49.4 mW cm?2, respectively. Long‐term current measurement also confirms that the Ag‐ScSZ cathode is thermally stable, with less degradation than bare Ag or Pt.  相似文献   

15.
16.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

17.
The fabrication and performance of a flexible and stretchable microbial fuel cell (MFC) monolithically integrated into a single sheet of textile substrate are reported. The single‐layer textile MFC uses Pseudomonas aeruginosa (PAO1) as a biocatalyst to produce a maximum power of 6.4 µW cm?2 and current density of 52 µA cm?2, which are substantially higher than previous textile‐MFCs and are similar to other flexible paper‐based MFCs. The textile MFC demonstrates a stable performance with repeated stretching and twisting cycles. The membrane‐less single‐chamber configuration drastically simplifies the fabrication and improves the performance of the MFC. A conductive and hydrophilic anode in a 3D fabric microchamber maximizes bacterial electricity generation from a liquid environment and a silver oxide/silver solid‐state cathode reduces cathodic overpotential for fast catalytic reaction. A simple batch fabrication approach simultaneously constructs 35 individual devices, which will revolutionize the mass production of textile MFCs. This stretchable and twistable power device printed directly onto a single textile substrate can establish a standardized platform for textile‐based biobatteries and will be potentially integrated into wearable electronics in the future.  相似文献   

18.
A new design for an energy‐harvesting electrochromic window (EH‐ECW) based on the fusion of two technologies, organic electrochromic windows and dye‐sensitized solar cells (DSSCs), is presented. Unlike other power‐generating smart windows, such as photoelectrochromic devices that are passive and only contain two states (i.e., a closed‐circuit colored state and an open‐circuit bleaching state), EH‐ECW allows active tuning of the transmittance by varying the applied potential and it functions as a photovoltaic cell based on a DSSC. The resulting device demonstrates a fast switching rate of 1 s in both the bleaching and coloring processes through the use of an electrochromic polymer as a counter electrode layer. To increase the transmittance of the device, a cobalt redox couple and a light‐colored, yet efficient, organic dye are used. The organic dye contains a polymeric structure that contributes to the high cyclic stability. The device exhibits a power conversion efficiency (PCE) of 4.5% (100 mW cm‐2) under AM 1.5 irradiation, a change in transmittance of 34% upon applied potential, and shows only 3% degradation in the PCE after 5000 cycles.  相似文献   

19.
This review article presents and discusses the recent progress made in the stabilization, protection, improvement, and design of halide perovskite‐based photocatalysts, photoelectrodes, and devices for solar‐to‐chemical fuel conversion. With the target of water splitting, hydrogen iodide splitting, and CO2 reduction reactions, the strategies established for halide perovskites used in photocatalytic particle‐suspension systems, photoelectrode thin‐film systems, and photovoltaic‐(photo)electrocatalysis tandem systems are organized and introduced. Moreover, recent achievements in discovering new and stable halide perovskite materials, developing protective and functional shells and layers, designing proper reaction solution systems, and tandem device configurations are emphasized and discussed. Perspectives on the future design of halide perovskite materials and devices for solar‐to‐chemical fuel conversion are provided. This review may serve as a guide for researchers interested in utilizing halide perovskite materials for solar‐to‐chemical fuel conversion.  相似文献   

20.
Numerous electric and gas utilities are actively pursuing “power‐to‐gas” technology, which involves using unwanted, excess renewable energy to manufacture hydrogen gas (H2) that is then injected into the existing natural gas pipeline network in 5–10% by volume. This work reports an alkaline fuel cell that has the potential to harness such gas mixtures for downstream generation of electric power. The fuel cell, which employs novel Gortex‐based electrodes layered with Pd/Pt catalysts, generates electricity remarkably efficiently when fuelled with methane (CH4) containing 5% hydrogen. Methane constitutes the major component of natural gas. The fuel cell has been studied over a range of hydrogen to methane ratios using Tafel plots and electrochemical impedance spectroscopy. These show that, in terms of fundamental operation, there is, astonishingly, almost no difference between using pure hydrogen and 5% hydrogen in methane, as the fuel. The Gortex electrodes and alkaline electrolyte are clearly able to utilize the dilute hydrogen as a fuel with remarkable efficiency. The methane acts as an inert carrier gas and is not consumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号