首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cu nanoclusters (CuNCs) capped by tannic acid (TA) (CuNCs@TA) can be used as a highly sensitive fluorescent probe for Cr(VI) detection. Therefore, a fluorescence detection method for Cr(VI) can be established according to the fluorescence quenching of CuNCs@TA that is caused immediately after the addition of Cr(VI). The fluorescence quenching efficiency of CuNCs@TA was linearly correlated with Cr(VI) concentration within the range 0.03–60 μM, and the detection limit for Cr(VI) was 5 nM. This method was demonstrated to be suitable for detecting Cr(VI) in actual water samples. We found that sodium thiosulfate (ST) can redox with Cr(VI) and therefore restore the fluorescence of CuNCs@TA. The mechanism of CuNCs@TA fluorescence quenching and enhancement by Cr(VI) and ST was investigated in detail. The ‘turn‐on’ fluorescent sensor is of practical significance and has broad application prospects.  相似文献   

2.
A two‐channel flow‐injection (FI) method is reported for the determination of iodide and iodine by its enhancement effect on the Ru(bpy)33+–NADH chemiluminescence (CL) system. The limit of detection (3 s of blank) was 1.0 × 10–9 mol/L iodide/iodine, with a sample throughput of 60/h. The calibration graphs over the range 1.0–50 × 10–8 mol/L gave correlation coefficients of 0.9994 and 0.999 (n = 5) with relative standard deviations (RSD; n = 4) of 1.0–2.5%, respectively. The effects of interfering cations, anions and some organic compounds were also studied. The method was applied to iodized salts and pharmaceutical samples and the results obtained were in good agreement with the value quoted. The CL method developed was compared with spectrophotometric method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This study described the utility of green analytical chemistry in the synthesis of gelatin‐capped silver, gold and bimetallic gold–silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin‐capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV–vis, X‐ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol–potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco‐friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10–9 to 1.0 × 10–1 mol/L was obtained with a limit of detection of 5.0 × 10–10 mol/L and a limit of quantification of 1.0 × 10‐9 mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Spiramycin (SP) residues in food do harm to human health. It is necessary to establish rapid detection method for SP. In this work, a monoclonal antibody (mAb)‐based gold immunochromatography assay (GICA) is developed for the rapid detection of SP. Under optimum conditions, the half‐maximal inhibitory concentration of SP‐mAb is 0.43 ng mL–1. The subtype of SP‐mAb is IgG2b. This antibody has no cross‐reactivity with other analogues and has high affinity (4.52 × 1010 L mol–1). Qualitative results can be visualized with the naked eye, with a visual detection limit of 1.0 ng mL–1 and cut‐off value of 10 ng mL–1. A hand‐held strip scanner is used for the quantitative analysis, with LOD 0.43 ng mL–1 in assay buffer. The recoveries of SP ranged from 72.3% to 112% in milk and 98.5% to 115% in beef, with variable coefficient ranging from 9.4% to 11.7% in milk and 8.14% to 15.4% in beef. Besides, the proposed GICA method for SP is confirmed by LC–MS/MS in SP‐spiked milk and beef samples. Overall, the developed GICA can be a useful tool for SP residues on‐site screening in milk and beef samples.  相似文献   

5.
A new highly sensitive high‐performance liquid chromatographic method with fluorescence detection (HPLC–FLD) in zero‐order emission mode was developed for the first time for the simultaneous determination of piroxicam (PRX) and norfloxacin (NRF) in biological fluids. The fluorescence detector wavelengths were set at 278 nm for excitation and zero‐order mode for emission. The zero‐order emission mode produced greater sensitivity for the measurement of both drugs than a fixed emission wavelength (446 nm). The new developed method was validated according to International Conference of Harmonization (ICH) guidelines. Linearity was found to be over concentration ranges 0.001–20 μg/ml and 0.00003–0.035 μg/ml for PRX and NRF, respectively. The limits of detection were 4.87 × 10?4 and 1.32 × 10?5 μg/ml for PRX and NRF, and the limits of quantitation were 1.47 × 10?3 and 4.01 × 10?5 μg/ml, respectively. The current fluorescence method was found to be more sensitive than most commonly used analytical methods and was successfully applied for simultaneous determination of PRX and NRF in biological fluids (serum and urine) with recoveries ranging from 91.67% to 100.36% for PRX and from 96.00% to 101.43% for NRF.  相似文献   

6.
A rapid and sensitive chemiluminescence immunoassay (CLIA) based on magnetic nanoparticles (MNPs) was developed to detect aflatoxin B1 (AFB1), which is a potent carcinogen in nature. We prepared monodisperse MNPs (300 nm in diameter) according to the solvothermal synthesis reaction and the MNPs were coated with silica by the Stöber method. Triethox was used as a one‐step carboxylation reagent, and 3‐aminopropyltriethoxysilane (APTES) an amination reagent, to modify the MNPs. We prepared two types of solid phase antigens using the above synthesized functionalized MNPs coupled with the later prepared AFB1‐oxime active ester and the purchased BSA–AFB1 respectively. 2′,6′‐dimethylcarbonylphenyl‐10‐sulfopropylacridinium‐9‐carboxylate 4′‐N‐hydroxysuccinimide (4′‐NHS) ester (NSP–DMAE–NHS), as a novel luminescent reagent, was used to label anti‐AFB1 antibodies. The two CLIA calibration curves based on the two types of solid phase antigens were obtained and compared. The acquired limit of detection (LOD) was about 0.001 ng/mL for the two functionalized MNPs‐based immunoassays, and the half maximal inhibitory concentration (IC50) was 0.51 ng/mL for the MNPs–AFB1‐based method and 0.72 ng/mL for the MNPs–BSA–AFB1‐based method.  相似文献   

7.
In the present study, a novel peroxyoxalate CE–CL system was developed to achieve high signal stability and sensitivity based on a design of a new interface including a new mixing mode and a new grounding electrode mode. Amino acids fluorescently tagged with dansyl chloride and naphthalene‐2,3‐dicarboxaldehyde(NDA) were used for the study. Experiment results show this new system is quite effective to separate and detect amine acid with high stability and resolute. The detection limits were 1.1 nmol/L for dansyl‐leucine (Leu) and 2.0 nmol/L for dansyl‐aspartic acid (Asp). The relative standard deviations of peak height and migration time were in the ranges of 2.3–3.8% and 1.2–1.5%, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Electrogenerated chemiluminescence (ECL) of a ruthenium complex polymer modified carbon paste electrode and its analytical applications were investigated. The ruthenium complex polymer was prepared using bis(2,2‐bipyridine) (4,4‐dicarboxy‐2,2‐bipyridine) ruthenium(II). The ECL behaviours of ruthenium complex polymer modified carbon paste electrode were investigated in the absence and presence of tripropylamine (TPA). The modified carbon paste electrode exhibited long‐term stability and fine reproducibility. The ECL intensity of the modified carbon paste electrode was linear with the concentration of TPA in the range 2.0 × 10–6–3.8 × 10–3 mol/L, with a detection limit (S:N = 3) of 6 × 10–7 mol/L. It was also found that raceanisodamine could enhance the ECL intensity of the modified electrode. The ECL intensity of the modified carbon paste electrode was linear with the concentration of raceanisodamine in the range 1.1 × 10–5–6.0 × 10–4 mol/L, with a detection limit (S:N = 3) of 6 × 10–6 mol/L. This work demonstrates that the entrapment of ruthenium complex in a highly cross‐linked polymer is a promising approach to construct an ECL modified electrode with long‐term stability and fine reproducibility. The modified electrode designed has a potential application in the ECL detector. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this study a novel method to determine iodine concentrations in human breast milk was developed and validated. The iodine was analyzed by inductively coupled plasma mass spectrometry (ICPMS) following tetramethylammonium hydroxide (TMAH) extraction at 90 °C in disposable polypropylene tubes. While similar approaches have been used previously, this method adopted a shorter extraction time (1 h vs. 3 h) and used antimony (Sb) as the internal standard, which exhibited greater stability in breast milk and milk powder matrices compared to tellurium (Te). Method validation included: defining iodine linearity up to 200 μg L−1; confirming recovery of iodine from NIST 1549 milk powder. A recovery of 94–98% was also achieved for the NIST 1549 milk powder and human breast milk samples spiked with sodium iodide and thyroxine (T4) solutions. The method quantitation limit (MQL) for human breast milk was 1.6 μg L−1. The intra-assay and inter-assay coefficient of variation for the breast milk samples and NIST powder were <1% and <3.5%, respectively. NIST 1549 milk powder, human breast milk samples and calibration standards spiked with the internal standard were all stable for at least 2.5 months after extraction. The results of the validation process confirmed that this newly developed method provides greater accuracy and precision in the assessment of iodine concentrations in human breast milk than previous methods and therefore offers a more reliable approach for assessing iodine concentrations in human breast milk.  相似文献   

10.
Most feed is poor in iodine and iodine supplementation of cow's diets must guarantee milk iodine concentrations for humans that contribute to prevention of the deficiency and minimize the risk of exceeding an upper limit of iodine intake. Five Holstein cows were fed four iodine doses (via Ca(ΙO3)2·6H2O). In four sequential 14-d periods, doses of 0.2 (basal diet), 1.3, 5.1, and 10.1 mg iodine kg?1 diet dry matter (DM) were administered. Samples of milk were collected during each period; blood was also sampled from each cow for each iodine dosage. In an 18-d depletion period, a non-supplemented diet was provided. Iodine was determined by inductively coupled plasma-mass spectrometry. The iodine content of milk and serum reflected the iodine dosages in feed significantly. The levels for the four doses tested in milk were 101±32, 343±109, 1215±222, and 2762±852 μg iodine kg?1. The total amount of iodine in milk per day was 30–40% of ingested supplemental iodine. Omitting additional iodine resulted in a short-term reduction of serum and milk iodine following an exponential decay function. The iodine supplementation of 0.5–1.5 mg kg?1 diet DM represents the requirement of the cow, resulting in 100–300 μg iodine L?1 milk, which optimally contributes to human supply. The maximum dietary levels of former and present EU legislations (10 and 5 mg iodine kg?1 cow feed) increase the risk of iodine excess in humans.  相似文献   

11.
In this paper, two types of carbon quantum dot (CQDs) were prepared using biocompatible l ‐methionine as the carbon source and urea as the nitrogen source and a one‐step hydrothermal treatment. By changing the reaction solvents (deionized (DI) water and dimethylformamide (DMF)), the maximum emission of the resulting CQDs shifted from blue to red light. Specifically, the emission wavelength of the CQDs moved from 433 nm to 625 nm following embedding of a new functional group (–CONH–) on the surface of the CQDs. Photoluminescence quantum yields of the CQDs with blue and red emission reached 64% and 61%, respectively. The R‐CQDs were used to detect metal ions and a linear relationship was demonstrated between ln(F/F0) and Fe3+ concentration in the range 0–0.5 mmol/L with a detection limit of 0.067 μM. Therefore these R‐CQDs have great potential as fluorescent probes for Fe3+ detection. We expect that the excellent water‐soluble, biocompatible and optical properties of the CQDs developed in this work mean that they will be widely used to detect biological cells.  相似文献   

12.
Aims: The aim of this study was to evaluate the efficiency of four isolation methods for the detection of pathogenic Yersinia enterocolitica from pig intestinal content. Methods and Results: The four methods comprised of 15 isolation steps using selective enrichments (irgasan–ticarcillin–potassium chlorate and modified Rappaport broth) and mildly selective enrichments at 4 or 25°C. Salmonella–Shigella‐desoxycholate–calcium chloride agar, cefsulodin–irgasan–novobiocin agar were used as plating media. The most sensitive method detected 78% (53/68) of the positive samples. Individual isolation steps using cold enrichment as the only enrichment or as a pre‐enrichment step with further selective enrichment showed the highest sensitivities (55–66%). All isolation methods resulted in high numbers of suspected colonies not confirmed as pathogenic Y. enterocolitica. Conclusions: Cold enrichment should be used in the detection of pathogenic Y. enterocolitica from pig intestinal contents. In addition, more than one parallel isolation step is needed. Significance and Impact of the Study: The study shows that depending on the isolation method used for Y. enterocolitica, the detected prevalence of Y. enterocolitica in pig intestinal contents varies greatly. More selective and sensitive isolation methods need to be developed for pathogenic Y. enterocolitica.  相似文献   

13.
Aim: To develop antibody–aptamer functionalized fibre‐optic biosensor for specific detection of Listeria monocytogenes from food products. Methods and Results: Aptamer, a single‐stranded oligonucleotide ligand that displays affinity for the target molecule, was used in the assay to provide sensor specificity. Aptamer‐A8, specific for internalin A, an invasin protein of L. monocytogenes, was used in the fibre‐optic sensor together with antibody in a sandwich format for detection of L. monocytogenes from food. Biotinylated polyclonal anti‐Listeria antibody, P66, was immobilized on streptavidin‐coated optical waveguide surface for capturing bacteria, and Alexa Fluor 647‐conjugated A8 was used as a reporter. The biosensor was able to selectively detect pathogenic Listeria in pure culture and in mixture with other bacteria at a concentration of approx. 103 CFU ml?1. This sensor also successfully detected L. monocytogenes cells from artificially contaminated (initial inoculation of 102 CFU 25 g?1) ready‐to‐eat meat products such as sliced beef, chicken and turkey after 18 h of enrichment. Conclusion: Based on the data presented in this study, the antibody–aptamer functionalized fibre‐optic biosensor could be used as a detection tool for sensitive and specific detection of L. monocytogenes from foods. Significance and Impact of the Study: The study demonstrates feasibility and novel application of aptamer on fibre‐optic biosensor platform for the sensitive detection of L. monocytogenes from food products.  相似文献   

14.
Chiral high‐performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL‐leucine‐tryptophan DL‐dipeptide on AmyCoat‐RP column are described. The mobile phase applied was ammonium acetate (10 mM)‐methanol‐acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL‐, DD‐, DL‐, and LD‐ stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0–2.3 and 5.6–14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π–π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL‐leucine‐DL‐tryptophan in unknown matrices. Chirality 28:642–648, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA–AuNPs@Tb–AMP (BSA, bovine serum albumin; AMP, adenosine 5′‐monophosphate; AuNPs, Au nanoparticles) metal–organic framework (MOF) nanostructures were synthesized by encapsulating BSA–AuNPs into Tb–AMP MOFs for the detection of 2,6‐pyridinedicarboxylic acid (DPA) and Hg2+. DPA could strongly co‐ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb–AMP MOFs. The fluorescence of BSA–AuNPs at 405 nm remained constant. While the fluorescence of BSA–AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb–AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+. The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545/F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635/F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.  相似文献   

16.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The attraction of wild tephritids to semiochemical‐based lures is the ideal basis for trap network design in detection programmes, but in practice, mass‐reared colony insects are usually used to determine trap efficiency. For Bactrocera cucurbitae Coquillett, a lower response by wild males compared with colony‐derived individuals, usually used to estimate attraction parameters, could mean that the sensitivity of detection networks targeting this pest is reduced. We describe the results of mark–release–recapture experiments with wild‐ and colony‐derived B. cucurbitae males in a grid of cuelure‐baited traps within a macadamia nut orchard in Hawaii Island designed to quantify the attraction of cuelure to each fly type. For colony males, we estimate a 65% probability of capture at 27 m, intermediate with previous estimates on the attraction of methyl eugenol to Bactrocera dorsalis Hendel (36 m) and trimedlure to Ceratitis capitata Wiedemann (14 m) at the same site. Results suggest similar response over distance by wild‐derived B. cucurbitae compared with colony in the field, but there may be qualitative differences in response between wild and colony based on very low response of wild males in a standard bioassay of attraction. For both fly types, the estimates of attraction in the smaller of two grid sizes tested were lower than for the larger spacing, suggesting trap competition was a factor at an intertrap distance of 75 m. Dispersal patterns within the grid were generally to the south for the colony‐derived males and more variable for the wild‐derived males. In neither case was the direction of recapture correlated with the prevailing direction of the wind.  相似文献   

18.
A simple, rapid chemiluminescence (CL) method was described for the determination of piroxicam, a commonly used analgesic agent drug. A strong CL signal was detected when cerium(IV) sulphate was injected into tris‐(4,7‐diphenyl‐1,10‐phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–piroxicam solution. The CL signal was proportional to the concentration of piroxicam in the range 2.8 × 10–8–1.2 × 10–5 mol/L. The detection limit was 2 × 10–8 mol/L and the relative standard deviation (RSD) was 3.7% (c = 7.0 × 10–7 mol/L piroxicam; n = 11). The proposed method was applied to the determination of piroxicam in pharmaceutical preparations in capsules, spiked serum and urine samples with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Orciprenaline sulphate (ORP) is a direct‐acting sympathomimetic with mainly beta‐adrenoceptor stimulant activity. It is used as a bronchodilator in the management of reversible airway obstruction. For the first time, a rapid highly sensitive spectrofluorimetric method is described that is relied on measuring the fluorescence spectra of ORP at acidic pH and without addition of any chemical reagents. The relative fluorescence intensity was measured at 310 nm and after excitation at 224 nm. ORP native fluorescence was calibrated in both water and acetonitrile as diluting solvents. The method was designed to estimate the drug in miscellaneous matrices with high accuracy and precision. Linear ranges of calibration curves were 30.0–400.0 ng/ml and 10.0–240.0 ng/ml in water and acetonitrile, respectively. The detection limits were calculated and reached as low as 3.3 and 3.1 ng/ml, respectively, representing the ultra‐sensitivity of the proposed method. This result permitted application of this method for spiked human plasma and urine and was used as a preliminary investigation with good percentage recovery (89.4–106.8%). The application was further extended to analyse ORP in its pharmaceutical formulations. The method was validated in compliance with International Council of Harmonization (ICH) Guidelines.  相似文献   

20.
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号