首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Wall polysaccharide chemistry varies phylogenetically, suggesting a need for variation in wall enzymes. Although plants possess the genes for numerous putative enzymes acting on wall carbohydrates, the activities of the encoded proteins often remain conjectural. To explore phylogenetic differences in demonstrable enzyme activities, we extracted proteins from 57 rapidly growing plant organs with three extractants, and assayed their ability to act on six oligosaccharides ‘modelling’ selected cell‐wall polysaccharides. Based on reaction products, we successfully distinguished exo‐ and endo‐hydrolases and found high taxonomic variation in all hydrolases screened: β‐d ‐xylosidase, endo‐(1→4)‐β‐d ‐xylanase, β‐d ‐mannosidase, endo‐(1→4)‐β‐d ‐mannanase, α‐d ‐xylosidase, β‐d ‐galactosidase, α‐l ‐arabinosidase and α‐l ‐fucosidase. The results, as GHATAbase, a searchable compendium in Excel format, also provide a compilation for selecting rich sources of enzymes acting on wall carbohydrates. Four of the hydrolases were accompanied, sometimes exceeded, by transglycosylase activities, generating products larger than the substrate. For example, during β‐xylosidase assays on (1→4)‐β‐d ‐xylohexaose (Xyl6), Marchantia, Selaginella and Equisetum extracts gave negligible free xylose but approximately equimolar Xyl5 and Xyl7, indicating trans‐β‐xylosidase activity, also found in onion, cereals, legumes and rape. The yield of Xyl9 often exceeded that of Xyl7–8, indicating that β‐xylanase was accompanied by an endotransglycosylase activity, here called trans‐β‐xylanase, catalysing the reaction 2Xyl6→ Xyl3 + Xyl9. Similar evidence also revealed trans‐α‐xylosidase, trans‐α‐arabinosidase and trans‐α‐arabinanase activities acting on xyloglucan oligosaccharides and (1→5)‐α‐l ‐arabino‐oligosaccharides. In conclusion, diverse plants differ dramatically in extractable enzymes acting on wall carbohydrate, reflecting differences in wall polysaccharide composition. Besides glycosidase and glycanase activities, five new transglycosylase activities were detected. We propose that such activities function in the assembly and re‐structuring of the wall matrix.  相似文献   

2.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

3.
Cell‐wall components are hydrolysed by numerous plant glycosidase and glycanase activities. We investigated whether plant enzymes also modify xyloglucan structures by transglycosidase activities. Diverse angiosperm extracts exhibited transglycosidase activities that progressively transferred single sugar residues between xyloglucan heptasaccharide (XXXG or its reduced form, XXXGol) molecules, at 16 μm and above, creating octa‐ to decasaccharides plus smaller products. We measured remarkably high transglycosylation:hydrolysis ratios under optimized conditions. To identify the transferred monosaccharide(s), we devised a dual‐labelling strategy in which a neutral radiolabelled oligosaccharide (donor substrate) reacted with an amino‐labelled non‐radioactive oligosaccharide (acceptor substrate), generating radioactive cationic products. For example, 37 μm [Xyl3H]XXXG plus 1 mm XXLG‐NH2 generated 3H‐labelled cations, demonstrating xylosyl transfer, which exceeded xylosyl hydrolysis 1.6‐ to 7.3‐fold, implying the presence of enzymes that favour transglycosylation. The transferred xylose residues remained α‐linked but were relatively resistant to hydrolysis by plant enzymes. Driselase digestion of the products released a trisaccharide (α‐[3H]xylosyl‐isoprimeverose), indicating that a new xyloglucan repeat unit had been formed. In similar assays, [Gal3H]XXLG and [Gal3H]XLLG (but not [Fuc3H]XXFG) yielded radioactive cations. Thus plants exhibit trans‐α‐xylosidase and trans‐β‐galactosidase (but not trans‐α‐fucosidase) activities that graft sugar residues from one xyloglucan oligosaccharide to another. Reconstructing xyloglucan oligosaccharides in this way may alter oligosaccharin activities or increase their longevity in vivo. Trans‐α‐xylosidase activity also transferred xylose residues from xyloglucan oligosaccharides to long‐chain hemicelluloses (xyloglucan, water‐soluble cellulose acetate, mixed‐linkage β‐glucan, glucomannan and arabinoxylan). With xyloglucan as acceptor substrate, such an activity potentially affects the polysaccharide’s suitability as a substrate for xyloglucan endotransglucosylase action and thereby modulates cell expansion. We conclude that certain proteins annotated as glycosidases can function as transglycosidases.  相似文献   

4.
5.
目的:了解北京市某社区女性居民的主要膳食模式及与常见慢性病的关系。方法:于2018年5月--2019年2月,采用多阶段整群随机抽样的方式对辖区内460名18~70岁女性居民进行问卷调查。收集基本资料、饮食行为习惯、家族病史、慢病史、治疗史等情况,分析饮食行为对常见慢性病的影响。结果:北京市白纸坊社区女性居民共有4种主要膳食模式,分别为:“传统膳食模式”(占43.1%)、“以肉类为主膳食模式”(占27.9%)、“水果蛋奶膳食模式”(占16.4%)和“主食、酒类和饮料膳食模式”(占12.6%)。Logistic 回归分析提示:在控制混杂因素后,“以肉类为主膳食模式”和“主食、酒类和饮料膳食模式”与社区女性居民高血压呈正相关性(OR=1.314和1.995,P<0.05)。“传统膳食模式”和“主食、酒类和饮料膳食模式”与社区女性居民糖尿病呈正相关性(OR=1.239和1.332,P<0.05)。“以肉类为主膳食模式”和“主食、酒类和饮料膳食模式”与社区女性居民血脂异常呈正相关性(OR=1.902和1.557,P<0.05)。“以肉类为主膳食模式”与社区女性居民冠心病呈正相关性(OR=1.338,P<0.05)。结论:社区女性居民膳食模式构成存在一定的不合理,且与主要慢性病的发生相关,应控制相关影响因素,促进健康、合理的膳食模式,降低慢性病的发生。  相似文献   

6.
BackgoundXylan is the second most abundant plant cell wall polysaccharide after cellulose with α-L-arabinofuranose (L-Araf) as one of the major side substituents. Capacity to degrade xylan is characteristic of many plant pathogens; and corresponding enzymes that debranch arabinoxylan provide tools to tailor xylan functionality or permit its full hydrolysis.MethodThree GH62_2 family α-arabinofuranosidases (Abfs) from plant pathogenic fungi, NhaAbf62A from Nectria haematococca, SreAbf62A from Sporisorium reilianum and GzeAbf62A from Gibberella zeae, were recombinantly produced in Escherichia coli. Their biochemical properties and substrate specificities were characterized in detail. Particularly with 1H NMR, the regioselectivity and debranching preference of the three Abfs were directly compared.ResultsThe activities of selected Abfs towards arabinoxylan were all optimal at pH 6.5. Their preferred substrates were wheat arabinoxylan, followed by soluble oat spelt xylan. The Abfs displayed selectivity towards either α-(1 → 2) or α-(1 → 3)-L- Araf mono-substituents in arabinoxylan. Specifically, SreAbf62A and GzeAbf62A removed m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substituents with a similar rates, whereas NhaAbf62A released m-α-(1 → 3)-L-Araf 1.9 times faster than m-α-(1 → 2)-L-Araf.Major conclusionsBuilding upon the known selectivity of GH62 family α-arabinofuranosidases towards L-Araf mono-substituents in xylans, the current study uncovers enzyme-dependent preferences towards m-α-(1 → 3)-L-Araf and m-α-(1 → 2)-L-Araf substitutions. Comparative sequence-structure analyses of Abfs identified an arginine residue in the xylose binding +2R subsite that was correlated to the observed enzyme-dependent L-Araf debranching preferences.General significanceThis study expands the limited pool of characterized GH62 Abfs particularly those from plant pathogenic fungi, and provides biochemical details and methodology to evaluate regioselectivity within this glycoside hydrolase family.  相似文献   

7.
New analogues of deltorphin I (DT I, Tyr‐d ‐Ala‐Phe‐Asp‐Val‐Val‐Gly‐NH2), with the d ‐Ala residue in position 2 replaced by α‐methyl‐β‐azido(amino, 1‐pyrrolidinyl, 1‐piperidinyl or 4‐morpholinyl)alanine, were synthesized by a combination of solid‐phase and solution methods. All ten new analogues were tested for receptor affinity and selectivity to μ‐ and δ‐opioid receptors. The affinity of analogues containing (R) or (S)‐α‐methyl‐β‐azidoalanine in position 2 to δ‐receptors strongly depended on the chirality of the α,α‐disubstituted residue. Peptide II , containing (S)‐α‐methyl‐β‐azidoalanine in position 2, displayed excellent δ‐receptor selectivity with its δ‐receptor affinity being only three times lower than that of DT I. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Bacteria degrading α‐(1→3)‐glucan were sought in the gut of fungivorous insects feeding on fruiting bodies of a polypore fungus Laetiporus sulphureus, which are rich in this polymer. One isolate, from Diaperis boleti, was selected in an enrichment culture in the glucan‐containing medium. The bacterium was identified as Paenibacillus sp. based on the results of the ribosomal DNA analysis. The Paenibacillus showed enzyme activity of 4.97 mU/cm3 and effectively degraded fungal α‐(1→3)‐glucan, releasing nigerooligosaccharides and a trace amount of glucose. This strain is the first reported α‐(1→3)‐glucan‐degrading microorganism in the gut microbiome of insects inhabiting fruiting bodies of polypore fungi.  相似文献   

9.
α‐L ‐arabinofuranosidases (EC 3.2.1.55) participate in the degradation of a variety of L ‐arabinose‐containing polysaccharides and interact synergistically with other hemicellulases in the production of oligosaccharides and bioconversion of lignocellulosic biomass into biofuels. In this work, the structure of a novel thermostable family 51 (GH51) α‐L ‐arabinofuranosidase from Thermotoga petrophila RKU‐1 (TpAraF) was determined at 3.1 Å resolution. The TpAraF tertiary structure consists of an (α/β)‐barrel catalytic core associated with a C‐terminal β‐sandwich domain, which is stabilized by hydrophobic contacts. In contrast to other structurally characterized GH51 AraFs, the accessory domain of TpAraF is intimately linked to the active site by a long β‐hairpin motif, which modifies the catalytic cavity in shape and volume. Sequence and structural analyses indicate that this motif is unique to Thermotoga AraFs. Small angle X‐ray scattering investigation showed that TpAraF assembles as a hexamer in solution and is preserved at the optimum catalytic temperature, 65°C, suggesting functional significance. Crystal packing analysis shows that the biological hexamer encompasses a dimer of trimers and the multiple oligomeric interfaces are predominantly fashioned by polar and electrostatic contacts.  相似文献   

10.
True bugs (Hemiptera) are an important pest complex not controlled by Bt‐transgenic crops. An alternative source of resistance includes inhibitors of digestive enzymes, such as protease or amylase inhibitors. αAI‐1, an α‐amylase inhibitor from the common bean, inhibits gut‐associated α‐amylases of bruchid pests of grain legumes. Here we quantify the in vitro activity of α‐amylases of 12 hemipteran species from different taxonomic and functional groups and the in vitro inhibition of those α‐amylases by αAI‐1. α‐Amylase activity was detected in all species tested. However, susceptibility to αAI‐1 varied among the different groups. α‐Amylases of species in the Lygaeidae, Miridae and Nabidae were highly susceptible, whereas those in the Auchenorrhyncha (Cicadellidae, Membracidae) had a moderate susceptibility, and those in the Pentatomidae seemed to be tolerant to αAI‐1. The species with αAI‐1 susceptible α‐amylases represented families which include both important pest species but also predatory species. These findings suggest that αAI‐1‐expressing crops have potential to control true bugs in vivo.  相似文献   

11.
The synthesis of new dermorphin analogues is described. The (R)‐alanine or phenylalanine residues of natural dermorphin were substituted by the corresponding α‐methyl‐β‐azidoalanine or α‐benzyl‐β‐azido(1‐piperidinyl)alanine residues. The potency and selectivity of the new analogues were evaluated by a competitive receptor binding assay in rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). The most active analogue in this series, Tyr‐(R)‐Ala‐(R)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 and its epimer were analysed by 1H and 13C NMR spectroscopy and restrained molecular dynamics simulations. The dominant conformation of the investigated peptides depended on the absolute configuration around Cα in the α‐benzyl‐β‐azidoAla residue in position 3. The (R) configuration led to the formation of a type I β‐turn, whilst switching to the (S) configuration gave rise to an inverse β‐turn of type I′, followed by the formation of a very short β‐sheet. The selectivity of Tyr‐(R)‐Ala‐(R) and (S)‐α‐benzyl‐β‐azidoAla‐Gly‐Tyr‐Pro‐Ser‐NH2 was shown to be very similar; nevertheless, the two analogues exhibited different conformational preferences. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
Aims: To evaluate the role of the peptidase activities from sourdough lactic acid bacteria (LAB) in the degradation of α‐gliadin fragments. Methods and Results: Different proline‐containing substrates were hydrolysed by LAB indicating pro‐specific peptidase activities. Lactobacillus plantarum CRL 775 and Pediococcus pentosaceus CRL 792 displayed the highest tri‐ and di‐peptidase activities, respectively. Lactobacillus plantarum strains hydrolysed more than 60%α‐gliadin fragments corresponding to the 31–43 and 62–75 amino acids in the protein after 2 h. None of the LAB strains alone could hydrolyse 57–89 α‐gliadin peptide; however, the combination of L. plantarum CRL 775 and P. pentosaceus CRL 792 led to hydrolysis (57%) of this peptide in 8 h. Conclusions: The capacity of LAB strains to degrade α‐gliadin fragments was not correlated to individual peptidase activities. Several strains separately degraded the 31–43 and 62–75 α‐gliadin fragments, while the 57–89 peptide degradation was associated with the combination of peptidase profiles from pooled LAB strains. This is the first report on the peptide hydrolase system of sourdough pediococci and its ability to reduce α‐gliadin fragments. Significance and Impact of the Study: This study contributes to a better knowledge of sourdough LAB proteolytic system and its role in the degradation of proline‐rich α‐gliadin peptides involved in celiac disease.  相似文献   

13.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
This study employed differential proteomic and immunoassay techniques to elucidate the biochemical mechanisms utilized by human muscle (vastus lateralis) in response to high altitude hypoxia exposure. Two groups of subjects, participating in a medical research expedition (A, n = 5, 19d at 5300 m altitude; B, n = 6, 66d up to 8848 m) underwent a ≈ 30% drop of muscular creatine kinase and of glycolytic enzymes abundance. Protein abundance of most enzymes of the tricarboxylic acid cycle and oxidative phosphorylation was reduced both in A and, particularly, in B. Restriction of α‐ketoglutarate toward succinyl‐CoA resulted in increased prolyl hydroxylase 2 and glutamine synthetase. Both A and B were characterized by a reduction of elongation factor 2alpha, controlling protein translation, and by an increase of heat shock cognate 71 kDa protein involved in chaperone‐mediated autophagy. Increased protein levels of catalase and biliverdin reductase occurred in A alongside a decrement of voltage‐dependent anion channels 1 and 2 and of myosin‐binding protein C, suggesting damage to the sarcomeric structures. This study suggests that during acclimatization to hypobaric hypoxia the muscle behaves as a producer of substrates activating a metabolic reprogramming able to support anaplerotically the tricarboxylic acid cycle, to control protein translation, to prevent energy expenditure and to activate chaperone‐mediated autophagy.  相似文献   

15.
The presence of aminoacylase activities was investigated in a crude extract of Streptomyces ambofaciens ATCC23877. First activities catalyzing the hydrolysis of N‐α or ε‐acetyl‐L‐lysine were identified. Furthermore, the acylation of lysine and different peptides was studied and compared with results obtained with lipase B of Candida antarctica (CALB). Different regioselectivities were demonstrated for the two classes of enzymes. CALB was able to catalyze acylation only on the ε‐position whereas the crude extract from S. ambofaciens possessed the rare ability to catalyze the N‐acylation on the α‐position of the lysine or of the amino‐acid in N‐terminal position of peptides. Two genes, SAM23877_1485 and SAM23877_1734, were identified in the genome of Streptomyces ambofaciens ATCC23877 whose products show similarities with the previously identified aminoacylases from Streptomyces mobaraensis. The proteins encoded by these two genes were responsible for the major aminoacylase hydrolytic activities. Furthermore, we show that the hydrolysis of N‐α‐acetyl‐L‐lysine could be attributed to the product of SAM23877_1734 gene.  相似文献   

16.

Aims

The aims were to isolate a raw starch–degrading α‐amylase gene baqA from Bacillus aquimaris MKSC 6.2, and to characterize the gene product through in silico study and its expression in Escherichia coli.

Methods and Results

A 1539 complete open reading frame of a starch–degrading α‐amylase gene baqA from B. aquimaris MKSC 6·2 has been determined by employing PCR and inverse PCR techniques. Bioinformatics analysis revealed that B. aquimaris MKSC 6.2 α‐amylase (BaqA) has no starch‐binding domain, and together with a few putative α‐amylases from bacilli may establish a novel GH13 subfamily most closely related to GH13_1. Two consecutive tryptophans (Trp201 and Trp202, BaqA numbering) were identified as a sequence fingerprint of this novel GH13 subfamily. Escherichia coli cells produced the recombinant BaqA protein as inclusion bodies. The refolded recombinant BaqA protein degraded raw cassava and corn starches, but exhibited no activity with soluble starch.

Conclusions

A novel raw starch–degrading B. aquimaris MKSC 6.2 α‐amylase BaqA is proposed to be a member of new GH13 subfamily.

Significance and Impact of the Study

This study has contributed to the overall knowledge and understanding of amylolytic enzymes that are able to bind and digest raw starch directly.  相似文献   

17.
Tumour necrosis factor‐α (TNF‐ α)is a major contributor to the pathogenesis of insulin resistance associated with obesity and type 2 diabetes. It has been found that endogenous hydrogen sulfide (H2S) contributes to the pathogenesis of diabetes. We have hypothesized that TNF‐α‐induced insulin resistance is involved in endogenous H2S generation. The aim of the present study is to investigate the role of endogenous H2S in TNF‐α‐induced insulin resistance by studying 3T3‐L1 adipocytes. We found that treatment of 3T3‐L1 adipocytes with TNF‐α leads to deficiency in insulin‐stimulated glucose consumption and uptake and increase in endogenous H2S generation. We show that cystathionine γ‐lyase (CSE) is catalysed in 3T3‐L1 adipocytes to generate H2S and that CSE expression and activity are upregulated by TNF‐α treatment. Inhibited CSE by its potent inhibitors significantly attenuates TNF‐α‐induced insulin resistance in 3T3‐L1 adipocytes, whereas H2S treatment of 3T3‐L1 adipocytes impairs insulin‐stimulated glucose consumption and uptake. These data indicate that endogenous CSE/H2S system contributes to TNF‐α‐caused insulin resistance in 3T3‐L1 adipocytes. Our findings suggest that modulation of CSE/H2S system is a potential therapeutic avenue for insulin resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
David E. Kenny 《Zoo biology》2001,20(4):245-250
After the loss of an African elephant (Loxodonta africana) in February 1989 at the Denver Zoological Gardens (DZG) with very low circulating serum α‐tocopherol, a long‐term study was initiated with three Asian elephants (Elephas maximus) to evaluate the effect of an oral micellized, water‐soluble, natural source d‐α‐tocopherol supplement. Baseline α‐tocopherol levels were evaluated and found to be approximately 3.75‐fold less than those reported for semi‐free‐ranging Asian Nepalese work camp and free‐ranging African elephants. The DZG elephants were then administered a liquid d‐α‐tocopherol (Emcelle®) at 2.2 IU/kg body weight orally once daily. Serum samples were obtained and analyzed at 1, 2, 8, and 12 months and then annually for 96 months. The oral vitamin E supplement significantly elevated serum levels above baseline and were found to be comparable with levels reported for semi–free‐ranging and free‐ranging elephants. Zoo Biol 20:245–250, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

19.
In aquatic microbial ecology, it has been considered that most extracellular enzymes except phosphatases are of bacterial origin. We tested this paradigm by evaluating the relationship between bacterial cell number and the activity of three glycolytic enzymes from 17 fresh waters and also from a laboratory experiment. Our large sets of pooled data do not seem to support such a simple explanation, because we found only a weak correlation of bacterial number with activity of α‐glucosidase (rs = 0.63), β‐glucosidase (rs = 0.45), and βN‐acetylhexosaminidase (rs = 0.44). We also tested relations of the enzymatic activities to potential sources of natural substrates: dissolved organic carbon (DOC) and phytoplankton (as chlorophyll a). Their correlations with the enzymatic activities tested were very weak or insignificant. On the other hand, we found evidence for distinct producers of extracellular enzymes by analysing enzyme kinetics. The kinetics usually did not follow the simple Michaelis‐Menten model but a more complex one, indicating a mixture of two enzymes with distinct affinity to a substrate. In combination with size fractionation, we could sometimes even distinguish three or more different enzymes. During diatom blooms, the diatom biomass tightly correlated with βN‐acetylhexosaminidase activity (>4 μm fraction). We also documented very tight relationships between activity of both glucosidases and dry weight of Daphnia longispina (rs = 1.0 and 0.60 for α‐ and β‐glucosidases, respectively) in an alpine clear‐water lake. Our data and evidence from other studies indicate that extracellular glycosidic activities in aquatic ecosystems cannot generally be assigned only to bacteria. Also invertebrate animals and other eukaryotes (fungi, diatoms, protozoa etc.) should be considered as potentially very important enzyme producers. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The crystal structure of the GH78 family α‐rhamnosidase from Klebsiella oxytoca (KoRha) has been determined at 2.7 Å resolution with rhamnose bound in the active site of the catalytic domain. Curiously, the putative catalytic acid, Asp 222, is preceded by an unusual non‐proline cis‐peptide bond which helps to project the carboxyl group into the active centre. This KoRha homodimeric structure is significantly smaller than those of the other previously determined GH78 structures. Nevertheless, the enzyme displays α‐rhamnosidase activity when assayed in vitro, suggesting that the additional structural domains found in the related enzymes are dispensible for function. Proteins 2015; 83:1742–1749. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号