首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work, two technically important polymer blends composed of isotactic poly (methyl methacrylate) (iPMMA) or syndiotactic poly (methyl methacrylate) (sPMMA) and isotactic poly (vinyl chloride) (iPVC) have been extensively investigated by molecular dynamics simulations. It is confirmed that sPMMA exhibits stronger interactions with iPVC than does iPMMA, and the non-conventional hydrogen bonds (HBs) occur between the two distinct components. Furthermore, the HBs in sPMMA/iPVC are more than those in iPMMA/iPVC, and the structural relaxation of HBs is closely associated with the backbone chain dynamics, which well explain the experimental trends in miscibility of the two systems and in glass transition temperature of single components. It should be noted that these results cannot be directly obtained by the experiments and single simulations, and the multiscale schemes used to prepare the initial all-atomistic configurations can play an important role. This work provides some key clues to improve the performance of polymer materials.  相似文献   

2.
A novel immobilization matrix, poly(3-methylthienyl methacrylate)–poly(3-thiopheneacetic acid) (PMTM–PTAA), was synthesized and used for the covalent immobilization of Saccharomyces cerevisiae invertase to produce invert sugar. The immobilization resulted in 87% immobilization efficiency. Optimum conditions for activity were not affected by immobilization and the optimum pH and temperature for both free and immobilized enzyme were found to be 4.5 and 55 °C, respectively. However, immobilized invertase was more stable at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined using the Lineweaver–Burk plot. The Km values were 35 and 38 mM for free and immobilized enzyme, respectively. The Vmax values were 29 and 24 mg glucose/mg enzyme min for free and immobilized enzyme, respectively. Immobilized enzyme could be used for the production of glucose and fructose from sucrose since it retained almost all the initial activity for a month in storage and retained the whole activity in repeated 50 batch reactions.  相似文献   

3.
UV absorption data analysis has been used to evaluate equilibrium constants of the pH‐induced interaction of 2,2′‐Bipy with polyadenylnic‐polyuridylic acid in aqueous solution. The conditional probabilities hard model has been adopted in treatment of concentration diagrams calculated by the soft modelling‐based Multivariate Curve Resolution‐Alternating Least Squares approach. Intrinsic binding constant (lgKg = 1.93), and the cooperativity parameter (ω = 340), were calculated as the best fit. The plot of the experimental binding constant versus 2,2′‐Bipy equilibrium concentration shows two modes of ligand with polymer interactions. The equilibrium hard model correctly reproduced the binding constant variations observed in the experiment. The results indicated that ligand binding in two steps is governed by a cooperative process, that is, the enhancement of deprotonated structure stability. It would appear that proposed calculation approach can be used in future combined hard modelling theoretical and soft modelling experimental works. © 2013 Wiley Periodicals, Inc. Biopolymers 99:621–627, 2013.  相似文献   

4.
The polymer–cobalt(III) complexes, [Co(bpy)(dien)BPEI]Cl3 · 4H2O (bpy = 2,2′‐bipyridine, dien = diethylentriamine, BPEI = branched polyethyleneimine) were synthesized and characterized. The interaction of these complexes with human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under physiological conditions using various physico‐chemical techniques. The results reveal that the fluorescence quenching of serum albumins by polymer–cobalt(III) complexes took place through static quenching. The binding of these complexes changed the molecular conformation of the protein considerably. The polymer–cobalt(III) complex with x = 0.365 shows antimicrobial activity against several human pathogens. This complex also induces cytotoxicity against MCF‐7 through apoptotic induction. However, further studies are needed to decipher the molecular mode of action of polymer–cobalt(III) complex and for its possible utilization in anticancer therapy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report here on transparent and luminescent ionogels that consist of ionic ternary europium (III) complexes and the inexpensive non‐toxic compound, poly(methyl methacrylate) (PMMA) and that were formed by dissolving these complexes in methacrylate (MMA) monomers followed by in situ polymerization. The resulting ionogels show a bright red emission under near‐UV light irradiation. Luminescence data confirm the energy transfer from terpyridine‐functionalized ionic liquid to Eu3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Local conformation and overall conformation of poly(γ‐DL‐glutamic acid) (PγDLGA) and poly(γ‐L‐glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by 1H‐NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random‐coil in a range of ε > ε*, where ε* is about 0.3, 0.35, 0.45, and 0.5 for added‐salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε*, however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random‐coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 191–198, 2016.  相似文献   

7.
8.
Reduced downstream costs, together with high purity recovery of polyhydroxyalkanoate (PHA), will accelerate the commercialization of high quality PHA‐based products. In this work, a process was designed for effective recovery of the copolymer poly(hydroxybutyrate‐co‐hydroxyhexanoate) (P(HB‐co‐HHx)) containing high levels of HHx (>15 mol%) from Ralstonia eutropha biomass using non‐halogenated solvents. Several non‐halogenated solvents (methyl isobutyl ketone, methyl ethyl ketone, and butyl acetate and ethyl acetate) were found to effectively dissolve the polymer. Isoamyl alcohol was found to be not suitable for extraction of polymer. All PHA extractions were performed from both dry and wet cells at volumes ranging from 2 mL to 3 L using a PHA to solvent ratio of 2% (w/v). Ethyl acetate showed both high recovery levels and high product purities (up to 99%) when using dry cells as starting material. Recovery from wet cells, however, eliminates a biomass drying step during the downstream process, potentially saving time and cost. When wet cells were used, methyl isobutyl ketone (MIBK) was shown to be the most favorable solvent for PHA recovery. Purities of up to 99% and total recovery yields of up to 84% from wet cells were reached. During polymer recovery with either MIBK or butyl acetate, fractionation of the extracted PHA occurred, based on the HHx content of the polymer. PHA with higher HHx content (17–30 mol%) remained completely in solution, while polymer with a lower HHx content (11–16 mol%) formed a gel‐like phase. All PHA in solution could be precipitated by addition of threefold volumes of n‐hexane or n‐heptane to unfiltered PHA solutions. Effective recycling of the solvents in this system is predicted due to the large differences in the boiling points between solvent and precipitant. Our findings show that two non‐halogenated solvents are good candidates to replace halogenated solvents like chloroform for recovery of high quality PHA. Biotechnol. Bioeng. 2013; 110: 461–470. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
10.
A novel surface treatment method was developed to enhance polymer-based microchannel enzyme-linked immunosorbent assay (ELISA) for Escherichia coli O157:H7 detection. By applying an amine-bearing polymer, poly(ethyleneimine) (PEI), onto poly(methyl methacrylate) (PMMA) surface at pH higher than 11, PEI molecules were covalently attached and their amine groups were introduced to PMMA surface. Zeta potential analysis and X-ray photoelectron spectroscopy (XPS) demonstrated that the alkali condition is preferable for PEI attachment onto the PMMA surface. The amine groups on the PMMA surface were then functionalized with glutaraldehyde, whose aldehyde groups served as the active sites for binding the antibody by forming covalent bonds with the amine groups of the protein molecules. This surface modification greatly improved antibody binding efficiency and the microchannel ELISA for E. coli O157:H7 detection. Compared with untreated PMMA microchannels, approximately 45 times higher signal and 3 times higher signal/noise ratio were achieved with the PEI surface treatment, which also shortened the time required for cells to bind to the microchannel surface to approximately 2 min, much less than that usually required for the same ELISA carried out in 96-well plates. The detection in the microchannel ELISA only required 5-8 cells per sample, which is also better than 15-30 cells required in multi-well plates. With the high sensitivity, short assay time, and small reagent consumption, the microchannel ELISA can be economically used for fast detection of E. coli O157:H7.  相似文献   

11.
Ross PD  Howard FB 《Biopolymers》2003,68(2):210-222
To assess the thermodynamic contribution of the 5-methyl group of thymine, we have studied the two-stranded helical complexes poly(dA).poly(dU) and poly(dA).poly(dT) and the three-stranded complexes--poly(dA).2poly(dU), poly(dA).poly(dT).poly(dU) and poly(dA).2poly(dT)--by differential scanning calorimetry, and uv optical melting experiments. The thermodynamic quantities associated with the 3 --> 2, 2 --> 1, and 3 --> 1 melting transitions are found to vary with salt concentration and temperature in a more complex manner than commonly believed. The transition temperatures, T(m), are generally not linear in the logarithm of concentration or activity of NaCl. The change in enthalpy and in entropy upon melting varies with salt concentration and temperature, and a change in heat capacity accompanies each transition. The poly(dA).2poly(dU) triple helix is markedly different from poly(dA).2poly(dT) in both its CD spectrum and thermodynamic behavior, while the poly(dA).poly(dT).poly(dU) triple helix resembles poly(dA).2poly(dT) in these properties. In comparing poly(dA).2poly(dT) with either the poly(dA).poly(dT).poly(dU) or the poly(dA).2poly(dU) triplexes, the substitution of thymine for uracil in the third strand results in an enhancement of stability against the 3 --> 2 dissociation of deltadeltaG degrees = -135 +/- 85 cal (mol A)(-1) at 37 degrees C. This represents a doubling of the absolute stability toward dissociation compared to the triplexes with poly(dU) as the third strand. The poly (dA).poly (dT) duplex is more stable than poly(dA).poly(dU) by deltadeltaG degrees = -350 +/- 60 cal (mol base pair)(-1) at 37 degrees C. Poly(dA).poly(dT) has 50% greater stability than poly(dA).poly(dU) as a result of the dT for dU substitution in the duplex.  相似文献   

12.
Highly pure SiO2 and SiO2:RE nanoparticles were synthesized by the sol–gel method. The morphological, structural and optical properties of the nanoparticles were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD results indicate that all the samples studied were free from impurities. SEM/TEM results indicate that the samples were well dispersed. Surface characterization of the nanocrystals by Fourier transform infrared spectroscopy has been carried out and the structure of surface‐bound SiO2 based on spectral analysis is proposed. Thermoluminescence (TL) characteristics were investigated to study the influence of rare earth dopants (Tb, Ce, Eu, Dy) on SiO2 matrix subjected to 0.5 kG (1 h) γ‐irradiation. Among these rare earth elements, Eu3+ was found to be the most efficient dopant for SiO2 showing maximum thermoluminescence intensity. SiO2:Eu0.5 seems to be a promising candidate for use as a TL dosimeter. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
BACKGROUND: Polyethylenimine (PEI) is toxic although it is one of the most successful and widely used gene delivery polymers with the aid of the proton sponge effect. Therefore, development of new novel gene delivery carriers having high efficiency with less toxicity is necessary. METHODS: In this study, a degradable poly(ester amine) carrier based on poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight linear PEI was prepared. Furthermore, we compared the gene expression of the polymer/DNA complexes using two delivery methods: intravenous administration as an invasive method and aerosol as a non-invasive method. RESULTS: The synthesized polymer had a relatively small molecular weight (MW = 7980) with 25 h half-life in vitro. The polymer/DNA complexes were formed at an N/P ratio of 9. The particle sizes and zeta-potentials of the complexes were dependent on N/P ratio. Compared to PEI 25K, the newly synthesized polymer exhibited high transfection efficiency with low toxicity. Poly(ester amine)-mediated gene expression in the lung and liver was higher than that of the conventional PEI carrier. Interestingly, non-invasive aerosol delivery induced higher gene expression in all organs compared to intravenous method in an in vivo mice study. Such an expressed gene via a single aerosol administration in the lung and liver remained unchanged for 7 days. CONCLUSIONS: Our study demonstrates that poly(ester amine) may be applied as an useful gene carrier.  相似文献   

14.
In this work, a new capillary electrokinetic chromatography (EKC) approach using ethanediamine‐bonded poly (glycidyl methacrylate) (Ami‐PGMA) microspheres as pseudostationary phases (PSPs) for enantioseparation with a polysaccharide, chondroitin sulfate E (CSE), as the chiral selector. The CSE@Ami‐PGMA EKC system was applied to enantioseparate basic drugs, and distinct improved separations of tested enantiomers were obtained while comparing with the single CSE system (the resolution increased from 0.41 to 1.26 for nefopam, from 1.24 to 2.15 for laudanosine, and from 0.92 to 2.36 for amlodipine). The Ami‐PGMA microspheres were fully characterized by scanning electron microscopy (SEM) and Fourier Transform Infrared (FT‐IR) spectroscopy, and the results showed Ami‐PGMA microspheres were uniform and spherical in size (1 μm). Several principal parameters were systematically investigated, and the optimal chiral separations were obtained with Tris/H3PO4 (20 mM, pH 2.4, and 3.4 for NEF) containing 2.5% (w/v) CSE and 20‐μg Ami‐PGMA microspheres in 20°C. Subsequently, the concentrations of Ami‐PGMA microspheres and CSE were proved to be the dominant factors for the separation in the CSE@Ami‐PGMA EKC system by Statistical Product and Service Solutions (SPSS).  相似文献   

15.
In this study, Li6Y1–xEux(BO3)3 phosphor was successfully synthesized using a modified solid‐state diffusion method. The Eu3+ ion concentration was varied at 0.05, 0.1, 0.2, 0.5 and 1 mol%. The phosphor was characterized for phase purity, morphology, luminescent properties and molecular transmission at room temperature. The XRD pattern suggests a result closely matching the standard JCPDS file (#80‐0843). The emission and excitation spectra were followed to discover the luminescence traits. The excitation spectra indicate that the current phosphor can be efficiently excited at 395 nm and at 466 nm (blue light) to give emission at 595 and 614 nm due to the 5D07Fj transition of Eu3+ ions. Concentration quenching was observed at 0.5 mol% Eu3+ in the Li6Y1–xEux(BO3)3 host lattice. Strong red emission with CIE chromaticity coordinates of phosphor is x = 0.63 and y = 0.36 achieved with dominant red emission at 614 nm the 5D07 F2 electric dipole transition of Eu3+ ions. The novel Li6Y1–xEux(BO3)3 phosphor may be a suitable red‐emitting component for solid‐state lighting using double‐excited wavelengths, i.e. near‐UV at 395 nm and blue light at 466 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Polarized ir spectra of oriented films of α‐helical poly(l ‐alanine) (α‐PLA) have been obtained as a function of residual solvent dichloroacetic acid (DCA). The amide A, B, II, and V regions exhibit multiple bands whose structure depends on the residual DCA content, and those associated with the αI‐PLA structure have been identified. A calculation of the relevant cubic anharmonic force constants indicates that, contrary to previous assignments, the overtone of amide II(A) is in Fermi resonance with the NH stretch fundamental, whose unperturbed frequency we now find to be at 3314 cm−1, significantly higher than the previously suggested 3279 cm−1. The presence of a structure in addition to the standard αI‐PLA is indicated by our analysis. © 1999 John Wiley & Sons, Inc. Biopoly 49: 195–207, 1999  相似文献   

17.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
19.
Polyvinyl pyrrolidone (PVP) crowned chrysene nanoparticles (CHYNPs) were prepared by using a reprecipitation method. Dynamic light scattering (DLS) and scanning electron microscope (SEM) studies indicate that the monodispersed spherical nanoparticles bear a negative charge on their surfaces. The bathochromic spectral shift in the UV–visible and fluorescence spectrum of CHYNPs from chrysene (CHY) in acetone solution supports the J‐ type aggregation of nanoparticles. The aggregation‐induced enhanced emission of CHYNPs at 486 and 522 nm decreases by increasing the concentration of the Ca2+ ion solution. It can display an ON–OFF type fluorescence response with high selectivity towards Ca2+ ions aqueous medium. Furthermore, the in situ generated PVP–CHYNPs–Ca2+ ensemble could recover the quenched fluorescence upon the addition of fluoride anions resulting in an OFF–ON type sensor. The present method has a correlation coefficient R2 = 0.988 with a detection limit of 1.22 μg/mL for Ca2+ in the aqueous medium. The fluorescence changes of PVP crowned CHYNPs upon the addition of Ca2+ and F? can be utilized as an INHIBIT logic gate at the molecular level, using Ca2+ and F? chemical inputs and the fluorescence intensity signal as output.  相似文献   

20.
The main issue in the development of transdermal patches made of poly(ethyl acrylate, methyl methacrylate) (Eudragit NE 40D, PMM) is the shrinkage phenomenon during the spreading of the latex onto the release liner. To solve this problem, the latex is usually freeze-dried and then re-dissolved in an organic solvent (method 1). To simplify the production process, we prepared an adhesive matrix by adding to the commercial PMM latex a plasticizer and an additive (anti-shrinkage agent) that avoids the shrinkage of the water dispersion spread onto the release liner (method 2). In some cases the active ingredient itself, such as potassium diclofenac (DK) and nicotine (NT), works as anti-shrinkage agent. In this work, the effects of the preparation method, types and concentrations of the plasticizer (triacetin and tributyl citrate) on the adhesive properties of the transdermal patches were investigated. The adhesive properties of the prepared patch were determined by texture analysis, peel adhesion test and shear adhesion. The PMM/plasticizer interactions were evaluated by ATR-FTIR spectroscopy. Furthermore, the in vitro skin permeation profiles of DK and NT released from the patch were determined by Franz cell method. Generally speaking, the variables that mainly modify the adhesive properties are the concentration and type of the plasticizer. The skin permeation profiles of DK and NT from the patch prepared by method 2 overlapped with those obtained with the commercial products. The results underline that the PMM latex can be used conveniently in the development of transdermal patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号