首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
As opposed to the neural crest, the neural epithelium is generally viewed as a static and cohesive structure. Here, using an ex vivo system free of the environmental influences and physical constraints encountered in the embryo, we show that neural epithelial cells are on the contrary intrinsically motile, although they do not undergo spontaneous epithelium‐to‐mesenchyme transition and display molecular and cellular characteristics distinct from those of neural crest cells. However, they can be instructed to undergo epithelium‐to‐mesenchyme conversion independently of the acquisition of neural crest traits. Migration potentialities of neural epithelial cells are transient and are progressively restricted during neural tube development. Restriction of cell migration is irreversible and can be in part accounted for by increase in N‐cadherin in cellular junctions and in cell polarity. In conclusion, our study reveals that the neural epithelium is a highly flexible tissue in which cells are maintained cohesive under the control of a combination of extrinsic factors and physical constraints.  相似文献   

2.
3.
Marijuana is the most commonly abused illicit drug by pregnant women. Its major psychoactive constituent, Δ9‐THC (Δ9‐tetrahydrocannabinol), crosses the placenta and accumulates in the f?tus, potentially harming its development. In humans, marijuana use in early pregnancy is associated with miscarriage, a fetal alcohol‐like syndrome, as well as learning disabilities, memory impairment, and ADHD in the offspring. Classical studies in the 1970 s have reached disparate conclusions as to the teratogenic effects of cannabinoids in animal models. Further, there is very little known about the immediate effects of Δ9‐THC on early embryogenesis. We have used the chick embryo as a model in order to characterize the effects of a water‐soluble Δ9‐THC analogue, O‐2545, on early development. Embryos were exposed to the drug (0.035 to 0.35 mg/ml) at gastrulation and assessed for morphological defects at stages equivalent to 9–14 somites. We report that O‐2545 impairs the formation of brain, heart, somite, and spinal cord primordia. Shorter incubation times following exposure to the drug show that O‐2545 interferes with the initial steps of head process and neural plate formation. Our results indicate that the administration of the cannabinoid O‐2545 during early embryogenesis results in embryotoxic effects and serves to illuminate the risks of marijuana exposure during the second week of pregnancy, a time point at which most women are unaware of their pregnancies. Birth Defects Res (Part B) 83:477–488, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell–cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin‐1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin‐1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin‐1 results in delayed neural fold apposition and neural tube closure. We further show that netrin‐1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin‐RGMa interactions, neogenin‐netrin‐1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin‐1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure. © 2012 Wiley Periodicals, Inc., 2013  相似文献   

5.
Wnt signalling regulates cell proliferation and cell fate determination during embryogenesis. However, little is known about the developmental role of one Wnt family member, Wnt‐3, during avian development. To investigate the possible functions of Wnt‐3, its expression pattern was determined using whole‐mount in situ hybridization. Wnt‐3 is expressed in important signalling centres, including the dorsal neural tube, Hensen's node and the AER (apical ectodermal ridge). Most interestingly, Wnt‐3 is expressed in the dorsal neural tube as a gradient, with the strongest expression anterior in the trunk. Furthermore, this study showed that Wnt‐3 and Wnt‐3a play a different role in neural crest lineages derived from different axial level of neural tube. Wnt‐3 might be involved in proliferation of neural crest lineages, whereas Wnt‐3a plays an important role in melanogenesis in vagal. However, both Wnt‐3 and Wnt‐3a cause a significant increase in melanogenesis in the trunk neural crest lineage.  相似文献   

6.
7.
Neural stem cells (NSCs) are self‐renewing, pluripotent and undifferentiated cells which have the potential to differentiate into neurons, oligodendrocytes and astrocytes. NSC therapy for tissue regeneration, thus, gains popularity. However, the low survivals rate of the transplanted cell impedes its utilities. In this study, we tested whether melatonin, a potent antioxidant, could promote the NSC proliferation and neuronal differentiation, especially, in the presence of the pro‐inflammatory cytokine interleukin‐18 (IL‐18). Our results showed that melatonin per se indeed exhibited beneficial effects on NSCs and IL‐18 inhibited NSC proliferation, neurosphere formation and their differentiation into neurons. All inhibitory effects of IL‐18 on NSCs were significantly reduced by melatonin treatment. Moreover, melatonin application increased the production of both brain‐derived and glial cell‐derived neurotrophic factors (BDNF, GDNF) in IL‐18‐stimulated NSCs. It was observed that inhibition of BDNF or GDNF hindered the protective effects of melatonin on NSCs. A potentially protective mechanism of melatonin on the inhibition of NSC's differentiation caused IL‐18 may attribute to the up‐regulation of these two major neurotrophic factors, BNDF and GNDF. The findings indicate that melatonin may play an important role promoting the survival of NSCs in neuroinflammatory diseases.  相似文献   

8.
Dual leucine zipper kinase (DLK), a mitogen‐activated protein kinase kinase kinase, controls axon growth, apoptosis and neuron degeneration during neural development, as well as neurodegeneration after various insults to the adult nervous system. Interestingly, recent studies have also highlighted a role of DLK in promoting axon regeneration in diverse model systems. Invertebrates and vertebrates, cold‐ and warm‐blooded animals, as well as central and peripheral mammalian nervous systems all differ in their ability to regenerate injured axons. Here, we discuss how DLK‐dependent signalling regulates apparently contradictory functions during neural development and regeneration in different species. In addition, we outline strategies to fine‐tune DLK function, either alone or together with other approaches, to promote axon regeneration in the adult mammalian central nervous system.  相似文献   

9.
《Developmental neurobiology》2017,77(11):1239-1259
The vertebrate central nervous system (CNS) is comprised of vast number of distinct cell types arranged in a highly organized manner. This high degree of complexity is achieved by cellular communication, including direct cell‐cell contact, cell‐matrix interactions, and cell‐growth factor signaling. Among the several developmental signals controlling the development of the CNS, Wnt proteins have emerged as particularly critical and, hence, have captivated the attention of many researchers. With Wnts' evolutionarily conserved function as primordial symmetry breaking signals, these proteins and their downstream effects are responsible for simultaneously establishing cellular diversity and tissue organization. With their expansive repertoire of secreted agonists and antagonists, cell surface receptors, signaling cascades and downstream biological effects, Wnts are ideally suited to control the complex processes underlying vertebrate neural development. In this review, we will describe the mechanisms by which Wnts exert their potent effects on cells and tissues and highlight the many roles of Wnt signaling during neural development, starting from the initial induction of the neural plate, the subsequent patterning along the embryonic axes, to the intricately organized structure of the CNS. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1239–1259, 2017  相似文献   

10.
11.
To establish a genetic tool for manipulating the neural stem/progenitor cell (NSC) lineage in a temporally controlled manner, we generated a transgenic mouse line carrying an NSC‐specific nestin promoter/enhancer expressing a fusion protein encoding Cre recombinase coupled to modified estrogen receptor ligand‐binding domain (ERT2). In the background of the Cre reporter mouse strain Rosa26lacZ, we show that the fusion CreERT2 recombinase is normally silent but can be activated by the estrogen analog tamoxifen both in utero, in infancy, and in adulthood. As assayed by β‐galactosidase activity in embryonic stages, tamoxifen activates Cre recombinase exclusively in neurogenic cells and their progeny. This property persists in adult mice, but Cre activity can also be detected in granule neurons and Bergmann glia at the anterior of the cerebellum, in piriform cortex, optic nerve, and some peripheral ganglia. No obvious Cre activity was observed outside of the nervous system. Thus, the nestin regulated inducible Cre mouse line provides a powerful tool for studying the physiology and lineage of NSCs. genesis 47:122–131, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
13.
The proliferation and differentiation of neural progenitor (NP) cells can be regulated by neurotransmitters including GABA and dopamine. The present study aimed to examine how these two neurotransmitter systems interact to affect post‐natal hippocampal NP cell proliferation in vitro. Mouse hippocampal NP cells express functional GABAA receptors, which upon activation led to an increase in intracellular calcium levels via the opening of L‐type calcium channels. Activation of these GABAA receptors also caused a significant decrease in proliferation; an effect that required the entry of calcium through L‐type calcium channels. Furthermore, while activation of D1‐like dopamine receptors had no effect on proliferation, it abrogated the suppressive effects of GABAA receptor activation on proliferation. The effects of D1‐like dopamine receptors are associated with a decrease in the ability of GABAA receptors to increase intracellular calcium levels, and a reduction in the surface expression of GABAA receptors. In this way, D1‐like dopamine receptor activation can increase the proliferation of NP cells by preventing GABAA receptor‐mediated inhibition of proliferation. These results suggest that, in conditions where NP cell proliferation is under the tonic suppression of GABA, agonists which act through D1‐like dopamine receptors may increase the proliferation of neural progenitors.  相似文献   

14.
15.
16.
17.
18.
The cranial trigeminal ganglia play a vital role in the peripheral nervous system through their relay of sensory information from the vertebrate head to the brain. These ganglia are generated from the intermixing and coalescence of two distinct cell populations: cranial neural crest cells and placodal neurons. Trigeminal ganglion assembly requires the formation of cadherin‐based adherens junctions within the neural crest cell and placodal neuron populations; however, the molecular composition of these adherens junctions is still unknown. Herein, we aimed to define the spatio‐temporal expression pattern and function of Cadherin‐7 during early chick trigeminal ganglion formation. Our data reveal that Cadherin‐7 is expressed exclusively in migratory cranial neural crest cells and is absent from trigeminal neurons. Using molecular perturbation experiments, we demonstrate that modulation of Cadherin‐7 in neural crest cells influences trigeminal ganglion assembly, including the organization of neural crest cells and placodal neurons within the ganglionic anlage. Moreover, alterations in Cadherin‐7 levels lead to changes in the morphology of trigeminal neurons. Taken together, these findings provide additional insight into the role of cadherin‐based adhesion in trigeminal ganglion formation, and, more broadly, the molecular mechanisms that orchestrate the cellular interactions essential for cranial gangliogenesis.  相似文献   

19.
The present paper introduces a focus stacking‐based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of images is used. The cell counting problem is addressed as the segmentation problem and we propose a 2‐level segmentation strategy. Use of CNN operating on focus stack for the detection of malaria is first of its kind, and it not only improved the detection accuracy (both in terms of sensitivity [97.06%] and specificity [98.50%]) but also favored the processing on cell patches and avoided the need for hand‐engineered features. The slide images are acquired with a custom‐built portable slide scanner made from low‐cost, off‐the‐shelf components and is suitable for point‐of‐care diagnostics. The proposed approach of employing sophisticated algorithmic processing together with inexpensive instrumentation can potentially benefit clinicians to enable malaria diagnosis.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号