首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
《Chirality》2017,29(12):811-823
The synthesis of (R )‐1‐(pyridin‐4‐yl)ethyl acetate was achieved over tandem palladium‐lipase catalyst with 100% selectivity using 4‐acetyl pyridine as a reactant. The 2% w /w palladium and lipase catalyst was successfully co‐immobilized in the microenvironment of the mesocellular foam and characterized by various techniques. The palladium metal from catalyst hydrogenated 4‐acetyl pyridine to form 1‐(pyridin‐4‐yl)ethanol. The generated intermediate product then underwent kinetic resolution over lipase and selectively gave (R )‐1‐(pyridin‐4‐ yl)ethyl acetate. The catalytic conditions were then studied for optimal performance of both steps. The reaction conditions were optimized to 50 °C and toluene as a solvent. Both chemical and enzymatic kinetic models of the reaction were developed for a given set of reaction conditions and kinetic parameters were predicted. At optimal conditions, the obtained selectivity of intermediate (1‐(pyridin‐4‐yl)ethanol) was 51.38%. The final product yield of ((R )‐1‐(pyridin‐4‐yl)ethyl acetate) was 48.62%.  相似文献   

2.
A newly synthesized 1, 4‐bis ((4‐((4‐heptylpiperazin‐1‐yl) methyl)‐1H‐1, 2, 3‐triazol‐1‐yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.  相似文献   

3.
The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)‐N‐(6‐(1‐phenylethoxy)‐2‐(propylthio)pyrimidin‐4‐yl)acetamide ( 1 ), (R/S)‐N‐(2‐(1‐phenylethylthio)‐6‐propoxypyrimidin‐4‐yl)acetamide ( 2 ), and (R/S)‐N‐(2‐(benzylthio)‐6‐sec‐butoxypyrimidin‐4‐yl)acetamide ( 3 ) was achieved by high‐performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434–440, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
With carbazole and p‐cyanobromobenzene as raw materials, 4‐(3,6‐di (anthracen‐9‐yl)‐9H‐carbazol‐9‐yl)benzonitrile (DACB) and 4‐(3,6‐bis(anthracene ‐9‐ylethynyl)‐9H‐carbazol‐9‐yl)benzonitrile (BACB) were synthesized through the Suzuki coupling reaction and the Sonogashira coupling reaction, respectively. These structures were characterized using 1H nuclear magnetic resonance (NMR), elemental analysis and mass spectrometry. Their thermal properties, ultraviolet–visible (UV‐vis) absorption, fluorescence emission, fluorescence quantum yields and electrochemical properties were also investigated systematically. In addition, a electroluminescence (EL) device was made with BACB as the emitting layer and performance of the EL device was studied. Results showed that: (1) the temperature points with 5% and 10% of DACB weight loss were 443°C and 461°C, respectively, and were 475°C and 506°C with BACB weight loss of 5% and 10%, respectively. When the temperature was 50?300°C, no significantly thermal transition was observed which suggested that they had excellent thermal stability. (2) DACB and BACB had single emission peaks at 415 nm, and 479 nm with fluorescence quantum yields of 0.61 and 0.87, respectively, indicating that both compounds could emit strong blue light. (3) According to electrochemical measurement on BACB and DACB, their gaps were 3.07 eV and 2.76 eV, respectively, which further showed that these two compounds were very stable and acted as efficient blue light materials. (4) The turn‐on voltage of the device was 5 V, and the device emitted dark blue light with Commission Internationale de L'Eclairage (CIE) coordinates of (0.157, 0.079).  相似文献   

5.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A new pH‐dependent fluorescence probe 2,8‐bis((E)‐4‐([2,2′:6′,2″‐terpyridin]‐4′‐yl)styryl)‐6H,12H‐5,11‐methanodibenzo[b,f][1,5]diazocine (TBPTP) based on Tröger's base (TB) bound to terpyridine was designed and synthesized. Photophysical properties and titration experiments of TBPTP were investigated by absorption and fluorescence spectroscopy. TBPTP exhibited high sensitivity in an acidic environment with the working pH range 7.2–2.5, especially having a good liner response to pH changes in the range 2.5–4.3, which suggested that TBPTP is a good candidate for pH monitoring.  相似文献   

7.
A novel series of imidazole‐linked thiazolidinone hybrid molecules were designed and synthesized through a feasible synthetic protocol. The molecules were characterized with Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry (HRMS) techniques. In vitro susceptibility tests against Gram‐positive (S. aureus and B. subtilis ) and Gram‐negative bacteria (E. coli and P. aeruginosa ) gave highly promising results. The most active molecule (3e) gave a minimal inhibitory concentration (MIC) value of 3.125 μg/mL which is on par with the reference drug streptomycin. Structure–activity relationships revealed activity enhancement by nitro and chloro groups when they occupied meta position of the arylidene ring in 2‐((3‐(imidazol‐1‐yl)propyl)amino)‐5‐benzylidenethiazolidin‐4‐ones. DNA‐binding study of the most potent molecule 3e with salmon milt DNA (sm‐DNA) under simulated physiological pH was probed with UV–visible absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. These studies established that compound 3e has a strong affinity towards DNA and binds at DNA minor groove with a binding constant (Kb) 0.18 × 102 L mol?1. Molecular docking simulations predicted strong affinity of 3e towards DNA with a binding affinity (ΔG) ‐8.5 kcal/mol. Van der Waals forces, hydrogen bonding and hydrophobic interactions were predicted as the main forces of interaction. The molecule 3e exhibited specific affinity towards adenine–thiamine base pairs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
《Chirality》2017,29(10):603-609
d ‐ and l ‐Tryptophan (Trp) and d ‐ and l ‐kynurenine (KYN) were derivatized with a chiral reagent, (S )‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS), and were separated enantiomerically by high‐performance liquid chromatography (HPLC) equipped with a triazole‐bonded column (Cosmosil HILIC) using tandem mass spectrometric (MS/MS) detection. Effects of column temperature, salt (HCO2NH4) concentration, and pH of the mobile phase in the enantiomeric separation, followed by MS detection of (S )‐DBD‐PyNCS‐d ,l ‐Trp and ‐d ,l ‐KYN, were investigated. The mobile phase consisting of CH3CN/10 mM ammonium formate in H2O (pH 5.0) (90/10) with a column temperature of 50–60 °C gave satisfactory resolution (R s) and mass‐spectrometric detection. The enantiomeric separation of d ,l ‐Trp and d ,l ‐KYN produced R s values of 2.22 and 2.13, and separation factors (α) of 1.08 and 1.08, for the Trp and KYN enantiomers, respectively. The proposed LC–MS/MS method provided excellent detection sensitivity of both enantiomers of Trp and KYN (5.1–19 nM).  相似文献   

9.
Novel, water‐soluble CdTe quantum dots (QDs) capped with β‐cyclodextrin (β‐CD) and ~ 4.0 nm in diameter were synthesized in aqueous solution, and characterized using transmission electron microscopy (TEM). A fluorescence‐sensing system based on the photoinduced electron transfer (PET) of (mono‐6‐thio‐β‐CD)–CdTe QDs was then designed to measure the interaction of phenothiazine dyes [methylene blue (MB) and methylene green (MG)] with herring sperm DNA (hsDNA). This fluorescence‐sensing system was based on a fluorescence “OFF–ON” mode. First, MB/MG adsorbed on the surface of (mono‐6‐thio‐β‐CD)–CdTe QDs effectively quenches the fluorescence of (mono‐6‐thio‐β‐CD)–CdTe QDs through PET. Then, addition of hsDNA restores the fluorescence intensity of (mono‐6‐thio‐β‐CD)–CdTe QDs, because hsDNA can bind with MB/MG and remove it from the as‐prepared (mono‐6‐thio‐β‐CD)–CdTe QDs. In addition, detailed reaction mechanisms of the (mono‐6‐thio‐β‐CD)–CdTe QDs–MB/MG–hsDNA solution system were studied using optical methods, by comparison with the TGA–CdTe QDs–MB/MG–hsDNA solution system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Two new biphenyl‐type neolignan derivatives, 2‐[2‐(hydroxymethyl)‐1‐benzofuran‐5‐yl]‐4‐(prop‐2‐en‐1‐yl)phenol ( 1 ) and 2′‐ethoxy‐5,5′‐di(prop‐2‐en‐1‐yl)biphenyl‐2‐ol ( 2 ), were isolated from the twigs of Magnolia denudata, together with six known compounds ( 3 – 8 ). The structures of 1 and 2 were determined through extensive 1D‐ and 2D‐NMR and mass‐spectrometric analyses. Magnolol ( 6 ) and honokiol ( 7 ) exhibited potent inhibition (IC50 values=4.4±0.2 and 0.71±0.13 μg/ml, resp.) of O$\rm{{_{2}^{{^\cdot} -}}}$ generation by human nutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, 2‐[2‐(hydroxymethyl)‐1‐benzofuran‐5‐yl]‐4‐(prop‐2‐en‐1‐yl)phenol ( 1 ), 2′‐ethoxy‐5,5′‐di(prop‐2‐en‐1‐yl)biphenyl‐2‐ol ( 2 ), magnolol ( 6 ), and vanillic acid ( 8 ) inhibited fMLP/CB‐induced elastase release with IC50 values=6.4±1.5, 2.4±0.4, 1.5±0.2, and 4.8±0.5 μg/ml, respectively.  相似文献   

11.
Efficient vacuum‐deposited tandem organic photovoltaic cells (TOPVs) composed of pristine fullerenes as the acceptors and two complementary absorbing donors, 2‐((2‐(5‐(4‐(diphenylamino)phenyl)thieno[3,2‐b]thiophen‐2‐yl)thiazol‐5‐yl)methylene)malononitrile for the visible absorption and 2‐((7‐(5‐(dip‐tolylamino)thiophen‐2‐yl)benzo[c]‐[1,2,5]thiadiazol‐4‐yl)methylene)malononitrile for the near‐infrared absorption, are reported. Two subcells are connected by the interconnection unit (ICU) composed of electron‐transporting layer/metal/p‐doped hole‐transporting layer. The p‐doped layer in the ICU enables increasing the short‐circuit current density (J SC) of TOPVs by tuning the relative position of subcells in the tandem devices to have the maximum optical field distribution response, which is well matched with theoretical calculation. Moreover, the introduction of the doped layer benefits to the higher fill factor (FF) of the consisting subcells without losing open‐circuit voltage (V OC) even with the thick active layers. As a result, power conversion efficiency of 9.2% is achieved with higher FF of 0.62 than that of single‐junction subcells (0.54, 0.57), J SC of 8.7 mA cm?2, and V OC of 1.71 V using 80 nm thick active layers in both subcells.  相似文献   

12.
Myeloperoxidase‐specific anti‐neutrophil cytoplasmic antibody (MPO–ANCA) is associated with rapidly progressive glomerulonephritis (RPGN) and glomerular crescent formation. Pathogenic factors in RPGN were analyzed by using SCG/Kj mice, which spontaneously develop MPO–ANCA‐associated RPGN. The serum concentration of soluble IL‐6R was determined by using ELISA and those of another 23 cytokines and chemokines by Bio‐Plex analysis. Sections of frozen kidney tissue were examined by fluorescence microscopy and the CD3+B220+ T cell subset in the spleen determined by a flow cytometry. Concentrations of IL‐6 and monocyte chemotactic protein‐1 were significantly correlated with the percentages of crescent formation. Anti‐IL‐6R antibody, which has been effective in patients with rheumatoid arthritis, was administered to SCG/Kj mice to elucidate the role of IL‐6 in the development of RPGN. MPO–ANCA titers decreased after administration of anti‐IL‐6R antibody, but not titers of mizoribine, which is effective in Kawasaki disease model mice. These results suggest that IL‐6‐mediated signaling is involved in the production of MPO–ANCA.  相似文献   

13.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

14.
A novel fluorescent sensor, 1‐((2‐hydroxynaphthalen‐1‐yl)methylene)urea (ocn) has been designed and applied as a highly selective and sensitive fluorescent probe for recognition of Al3+ in Tris–HCl (pH = 7.20) solution. The probe ocn exhibits an excellent selectivity to Al3+ over other examined metal ions, anions and amino acids with a prominent fluorescence ‘turn‐on’ at 438 nm. ocn binds to Al3+ with a 2:1 binding stoichiometry and the detection limit was 0.3 μM. Furthermore, its capability of biological application was evaluated and the results showed that the sensor could be used to detect Al3+ in living cells.  相似文献   

15.
Engin ahin 《Chirality》2019,31(10):892-897
Optically active aromatic alcohols are valuable chiral building blocks of many natural products and chiral drugs. Lactobacillus paracasei BD87E6, which was isolated from a cereal‐based fermented beverage, was shown as a biocatalyst for the bioreduction of 1‐(benzofuran‐2‐yl) ethanone to (S)‐1‐(benzofuran‐2‐yl) ethanol with highly stereoselectivity. The bioreduction conditions were optimized using L. paracasei BD87E6 to obtain high enantiomeric excess (ee) and conversion. After optimization of the bioreduction conditions, it was shown that the bioreduction of 1‐(benzofuran‐2‐yl)ethanone was performed in mild reaction conditions. The asymmetric bioreduction of the 1‐(benzofuran‐2‐yl)ethanone had reached 92% yield with ee of higher than 99.9% at 6.73 g of substrate. Our study gave the first example for enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol by a biological green method. This process is also scalable and has potential in application. In this study, a basic and novel whole‐cell mediated biocatalytic method was performed for the enantiopure production of (S)‐1‐(benzofuran‐2‐yl)ethanol in the aqueous medium, which empowered the synthesis of a precious chiral intermediary process to be converted into a sophisticated molecule for drug production.  相似文献   

16.
A new system for the determination of nucleic acid by rare earth metallic porphyrin of [tetra‐(3‐methoxy‐4‐hydroxyphenyl)]–Tb3+ [T(3‐MO‐4HP)–Tb3+] porphyrin as fluorescence spectral probe has been developed in this paper. Nucleic acid can enhance the fluorescence intensity of the T(3‐MO‐4HP)–Tb3+ porphyrin in the presence of bis(2‐ethylhexyl)sulfosuccinate sodium salt(AOT) micelle. In pH 8.00 Tris–HCl buffer solution, under optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of nucleic acids in the range of 0.05–3.00 µg mL?1 for calf thymus DNA (ct DNA) and 0.03–4.80 µg mL?1 for fish sperm DNA(fs DNA). Their detection limits are 0.03 and 0.01 µg mL?1, respectively. In addition, the binding interaction mechanism between T(3‐MO‐4HP)–Tb3+ porphyrin and ct DNA is also investigated by resonance scattering and fluorescence spectra. The maximum binding number is calculated by molar ratio method. The new system can be used for the determination of nucleic acid in pig liver, yielding satisfactory results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Time‐course of biotransformation of racemic trans‐4‐((E)‐4′,8′‐dimethylnona‐3′,7′‐dien‐1‐yl)‐5‐iodomethyl‐4‐methyldihydrofuran‐2‐one ( 1 ) in fungal and yeast cultures was investigated. In these conditions, the substrate 1 was enantioselectively dehalogenated yielding 4‐((E)‐4′,8′‐dimethylnona‐3′,7′‐dien‐1‐yl)‐4‐methyl‐5‐methylenedihydrofuran‐2‐one ( 2 ) and its structure was established based on the spectroscopic data. The most effective biocatalyst used was Didymosphaeria igniaria, which catalyzed the process with highest rate and enantioselectivity (ee of product = 76%). The antiproliferative activity of δ‐iodo‐γ‐lactone 1 , product of its biotransformation 2 , and starting substrate (farnesol) were evaluated toward two cancer cell lines: A549 (human lung adenocarcinoma) and HL‐60 (human promyelocytic leukemia).  相似文献   

18.
Self‐assembly of PAs composed of palmitic acid and several repeated heptad peptide sequences, C15H31CO‐(IEEYTKK)n‐NH2 (n = 1–4, represented by PA1–PA4), was investigated systematically. The secondary structures of the PAs were characterized by CD. PA3 and PA4 (n = 3 and 4, respectively) showed an α‐helical structure, whereas PA1 and PA2 (n = 1 and 2, respectively) did not display an α‐helical conformations under the tested conditions. The morphology of the self‐assembled peptides in aqueous medium was studied by transmission electron microscopy. As the number of heptad repeats in the PAs increased, the nanostructure of the self‐assembled peptides changed from nanofibers to nanovesicles. Changes of the secondary structures and the self‐assembly morphologies of PA3 and PA4 in aqueous medium with various cations were also studied. The critical micelle concentrations were determined using a pyrene fluorescence probe. In conclusion, this method may be used to design new peptide nanomaterials. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
In an attempt to combine the HIV‐inhibitory capacity of different 2′,3′‐dideoxynucleoside (ddN) analogs, we have designed and synthesized several dimers of [AZT]‐[AZT] and [AZT]‐[d4T]. In addition, we also synthesized the dimers of 1‐(1H‐benzimidazol‐1‐yl)‐1‐deoxy‐β‐D ‐ribofuranose. The in vitro anti‐HIV activity of these compounds on a pseudotype virus, pNL4‐3.Luc.R‐E‐, in the 293T cells has been determined. Among these compounds, 2,2′‐(propane‐1,3‐diyl)bis[1‐(β‐D ‐ribofuranosyl)‐1H‐benzimidazole] ( 3 ) showed the highest anti‐HIV activity with similar effect as AZT.  相似文献   

20.
Three sulfonamide derivatives (SAD) were first synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfadimidine, sulfamethoxazole and sulfachloropyridazine sodium) and were characterized by elemental analysis, 1H NMR and MS. The interaction between bovine serum albumin (BSA) and SAD was studied using UV/vis absorption spectroscopy, fluorescence spectroscopy, time‐resolved fluorescence spectroscopy and circular dichroism spectra under imitated physiological conditions. The experimental results indicated that SAD effectively quenched the intrinsic fluorescence of BSA via a static quenching process. The thermodynamic parameters showed that hydrogen bonding and van der Waal's forces were the predominant intermolecular forces between BSA and two SADs [4‐((4‐(N‐(4,6‐dimethylpyrimidin‐2‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate and 4‐((4‐(N‐(5‐methylisoxazol‐3‐yl)sulfamoyl)phenyl)carbamoyl)phenyl acetate], but hydrophobic forces played a major role in the binding process of BSA and 4‐((4‐(N‐(6‐chloropyridazin‐3‐yl)sulfamoyl)phenyl) carbamoyl)phenyl acetate. In addition, the effect of SAD on the conformation of BSA was investigated using synchronous fluorescence spectroscopy and circular dichroism spectra. Molecular modeling results showed that SAD was situated in subdomain IIA of BSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号