首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review, we focus on pathways intersecting through p53 and cyclin E, highlighting how oncogenic effects of cyclin E deregulation, especially overexpression of shortened or low molecular weight (LMW) forms of cyclin E protein, are amplified by loss of regulatory control through p53 to promote tumor development. Expression of cyclin E protein promotes progression into S-phase, an activity opposed by p53-regulated activation of checkpoint controls or apoptosis. Loss of p53 function is an escape hatch by which tumor cells, initiated by a number of means including cyclin E deregulation, can avoid cell cycle arrest or cell death and progress through further stages of unchecked deregulation and growth. To determine how this escape hatch is opened and, ultimately, how to close it, we must understand the networks of normal signaling and processing in a cell and where they intersect.  相似文献   

2.
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53−/− tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.  相似文献   

3.
4.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

5.
BACKGROUND: Human colon cancers have a high frequency of p53 mutations, and cancer cells expressing mutant p53 tend to be resistant to current chemo- and radiation therapy. It is thus important to find therapeutic agents that can inhibit colon cancer cells with altered p53 status. beta-Lapachone, a novel topoisomerase inhibitor, has been shown to induce cell death in human promyelocytic leukemia and prostate cancer cells through a p53-independent pathway. Here we examined the effects of beta-lapachone on human colon cancer cells. MATERIALS AND METHODS: Several human colon cancer cell lines, SW480, SW620, and DLD1, with mutant or defective p53, were used. The antiproliferative effects of beta-lapachone were assessed by colony formation assays, cell cycle analysis, and apoptosis analysis, including annexin V staining and DNA laddering analysis. The effects on cell cycle and apoptosis regulatory proteins were examined by immunoblotting. RESULTS: All three cell lines, SW480, SW620, and DLD1, were sensitive to beta-lapachone, with an IC(50) of 2 to 3 microM in colony formation assays, a finding similar to that previously reported for prostate cancer cells. However, these cells were arrested in different stages of S phase. At 24 hr post-treatment, beta-lapachone induced S-, late S/G2-, and early S-phase arrest in SW480, SW620, and DLD1 cells, respectively. The cell cycle alterations induced by beta-lapachone were congruous with changes in cell cycle regulatory proteins such as cyclin A, cyclin B1, cdc2, and cyclin D1. Moreover, beta-lapachone induced apoptosis, as demonstrated by annexin V staining, flow cytometric analysis of DNA content, and DNA laddering analysis. Furthermore, down-regulation of mutant p53 and induction of p27 in SW480 cells, and induction of pro-apoptotic protein Bax in DLD1 cells may be pertinent to the anti-proliferative and apoptotic effects of beta-lapachone on these cells. CONCLUSIONS: beta-Lapachone induced cell cycle arrest and apoptosis in human colon cancer cells through a p53-independent pathway. For human colon cancers, which often contain p53 mutations, beta-lapachone may prove to be a promising anticancer agent that can target cancer cells, especially those with mutant p53.  相似文献   

6.
We have recently shown that induction of the p53 tumour suppressor protein by the small-molecule RITA (reactivation of p53 and induction of tumour cell apoptosis; 2,5-bis(5-hydroxymethyl-2-thienyl)furan) inhibits hypoxia-inducible factor-1α and vascular endothelial growth factor expression in vivo and induces p53-dependent tumour cell apoptosis in normoxia and hypoxia. Here, we demonstrate that RITA activates the canonical ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related DNA damage response pathway. Interestingly, phosphorylation of checkpoint kinase (CHK)-1 induced in response to RITA was influenced by p53 status. We found that induction of p53, phosphorylated CHK-1 and γH2AX proteins was significantly increased in S-phase. Furthermore, we found that RITA stalled replication fork elongation, prolonged S-phase progression and induced DNA damage in p53 positive cells. Although CHK-1 knockdown did not significantly affect p53-dependent DNA damage or apoptosis induced by RITA, it did block the ability for DNA integrity to be maintained during the immediate response to RITA. These data reveal the existence of a novel p53-dependent S-phase DNA maintenance checkpoint involving CHK-1.  相似文献   

7.
Cancer cells often contain p53 abnormalities that impair cell-cycle checkpoint progression and cause resistance to various anti-cancer treatments. DNA damage occurs at actively transcribed genes during G1-phase in yeast cells that have a deficient mRNA export capacity. Here, we show that germinal center-associated nuclear protein (GANP), a homologue of yeast Sac3 that is involved in mRNA export, is indispensable for ensuring the stability of human genomic DNA and that GANP knockdown causes apoptosis and necrosis of p53-insufficient cancer cells. Ganp small interfering RNA (siGanp)-induced DNA damage, accompanied by a decrease in the number of cells in S-phase, caused late apoptosis and necrosis in p53-insufficient cancer cells through both caspase-dependent and -independent mechanisms. siGanp effectively induced DNA damage leading to cell death in p53-insufficient cancer cells in vitro and protect the growth of cancer cells transplanted into immunocompromized mice, suggesting that siGanp has potential as a selective treatment for p53-insufficient cancer cells.  相似文献   

8.
9.
Although the p53 tumor-suppressor gene product plays a critical role in apoptotic cell death induced by DNA-damaging chemotherapeutic agents, human glioma cells with functional p53 were more resistant to gamma-radiation than those with mutant p53. U-87 MG cells with wild-type p53 were resistant to gamma-radiation. U87-W E6 cells that lost functional p53, by the expression of type 16 human papillomavirus E6 oncoprotein, became susceptible to radiation-induced apoptosis. The formation of ceramide by acid sphingomyelinase (A-SMase), but not by neutral sphingomyelinase, was associated with p53-independent apoptosis. SR33557 (2-isopropyl-1-(4-[3-N-methyl-N-(3,4-dimethoxybphenethyl)amino]propyloxy)benzene-sulfonyl) indolizine, an inhibitor of A-SMase, suppressed radiation-induced apoptotic cell death. In contrast, radiation-induced A-SMase activation was blocked in glioma cells with endogenous functional p53. The expression of acid ceramidase was induced by gamma-radiation, and was more evident in cells with functional p53. N-oleoylethanolamine, which is known to inhibit ceramidase activity, unexpectedly downregulated acid ceramidase and accelerated radiation-induced apoptosis in U87-W E6 cells. Moreover, cells with functional p53 could be sensitized to gamma-radiation by N-oleoylethanolamine, which suppressed radiation-induced acid ceramidase expression and then enhanced ceramide formation. Sensitization to gamma-radiation was also observed in U87-MG cells depleted of functional p53 by retroviral expression of small interfering RNA. These results indicate that ceramide may function as a mediator of p53-independent apoptosis in human glioma cells in response to gamma-radiation, and suggest that p53-dependent expression of acid ceramidase and blockage of A-SMase activation play pivotal roles in protection from gamma-radiation of cells with endogenous functional p53.  相似文献   

10.
Using short hairpin RNA against p53, transient ectopic expression of wild-type p53 or mutant p53 (R248W or R175H), and a p53- and p21-dependent luciferase reporter assay, we demonstrated that growth arrest and apoptosis of FaDu (human pharyngeal squamous cell carcinoma), Hep3B (hepatoma), and MG-63 (osteosarcoma) cells induced by aloe-emodin (AE) are p53-independent. Co-immunoprecipitation and small interfering RNA (siRNA) studies demonstrated that AE caused S-phase cell cycle arrest by inducing the formation of cyclin A-Cdk2-p21 complexes through extracellular signal-regulated kinase (ERK) activation. Ectopic expression of Bcl-X(L) and siRNA-mediated Bax attenuation significantly inhibited apoptosis induced by AE. Cyclosporin A or the caspase-8 inhibitor Z-IETD-FMK blocked AE-induced loss of mitochondrial membrane potential and prevented increases in reactive oxygen species and Ca(++). Z-IETD-FMK inhibited AE-induced apoptosis, Bax expression, Bid cleavage, translocation of tBid to mitochondria, ERK phosphorylation, caspase-9 activation, and the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G from mitochondria. The stability of the mRNAs encoding caspase-8 and -10-associated RING proteins (CARPs) 1 and 2 was affected by AE, whereas CARP1 or 2 overexpression inhibited caspase-8 activation and apoptosis induced by AE. Collectively, our data indicate AE induces caspase-8-mediated activation of mitochondrial death pathways by decreasing the stability of CARP mRNAs in a p53-independent manner.  相似文献   

11.
Negative regulation of E2F-1 DNA binding function by cyclin A kinase represents part of an S-phase checkpoint control system that, when activated, leads to apoptosis. In this study, we examined the cellular sensitivity and resistance of isogenic mouse fibrosarcoma cell lines, differing primarily in their p53 status, to ectopic expression of wild-type (wt) E2F-1 and cyclin A kinase binding-defective mutants of it. We found that E2F-1 (wt) potently affected the survival of p53+/+ tumor cells but not that of p53-/- cells. In contrast, expression of cyclin A kinase binding-defective E2F-1 species interfered with cell survival of fibrosarcoma cells irrespective of their p53 status. Finally, expression of E2F-1 (wt) in p53-/- fibrosarcoma cells enhanced the cytotoxic effect of ionizing radiation in vitro and in vivo in a mouse tumor model. These results suggest that E2F-1-dependent activation of an S-phase checkpoint is p53 independent and that E2F-1 possesses radiosensitizing properties in the absence of p53.  相似文献   

12.
DNA damaging agents such as ultraviolet (UV) induce cell cycle arrest followed by apoptosis in cells where irreparable damage has occurred. Here we show that during early phase G1 arrest which occurs in UV-irradiated human U343 glioblastoma cells, there are (1) decreases in cyclin D1 and cdk4 levels which parallel a loss of S-phase promoting cyclin D1/cdk4 complexes, and (2) increases in p53 and p21 protein levels. We also show that the late phase UV-induced apoptosis of U343 cells occurs after cell cycle re-entry and parallels the reappearance of cyclin D1 and cdk4 and cyclin D1/cdk4 complexes. These findings suggest that cyclin D1 can abrogate UV-induced G1 arrest and that the p53-mediated apoptosis that occurs in these cells is dependent on cyclin D1 levels. We examined these possibilities using U343 cells that ectopically express cyclin D1 and found that indeed cyclin D1 can overcome the cell cycle arrest caused by UV. Moreover, the appearance of p53 protein and the induction of apoptosis in UV-irradiated cells was found to be dependent on the level of ectopically expressed cyclin D1. These findings, therefore, indicate that expression of cyclin D1 following DNA damage is essential for cell cycle re-entry and p53-mediated apoptosis.  相似文献   

13.
The role of p53 in tissue protection is not well understood. Loss of p53 blocks apoptosis in the intestinal crypts following irradiation but paradoxically accelerates gastrointestinal (GI) damage and death. PUMA and p21 are the major mediators of p53-dependent apoptosis and cell-cycle checkpoints, respectively. To better understand these two arms of p53 response in radiation-induced GI damage, we compared animal survival, as well as apoptosis, proliferation, cell-cycle progression, DNA damage, and regeneration in the crypts of WT, p53 knockout (KO), PUMA KO, p21 KO, and p21/PUMA double KO (DKO) mice in a whole body irradiation model. Deficiency in p53 or p21 led to shortened survival but accelerated crypt regeneration associated with massive nonapoptotic cell death. Nonapoptotic cell death is characterized by aberrant cell-cycle progression, persistent DNA damage, rampant replication stress, and genome instability. PUMA deficiency alone enhanced survival and crypt regeneration by blocking apoptosis but failed to rescue delayed nonapoptotic crypt death or shortened survival in p21 KO mice. These studies help to better understand p53 functions in tissue injury and regeneration and to potentially improve strategies to protect or mitigate intestinal damage induced by radiation.  相似文献   

14.
15.
Mitotic catastrophe is a poorly defined type of cell death linked to the abnormal activation of cyclin B/Cdk1. Here we propose that a conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe, provided that cell cycle checkpoints are inhibited, in particular the DNA structure checkpoints and the spindle assembly checkpoint. Two subtypes of mitotic catastrophe can be distinguished. First, mitotic catastrophe can kill the cell during or close to the metaphase, in a p53-independent fashion, as this occurs in Chk2-inhibited heterokarya generated by fusion. Second, mitotic catastrophe can occur after failed mitosis, during the activation of the polyploidy checkpoint, in a partially p53-dependent fashion. In these conditions, cells die as a result of caspase activation and mitochondrial membrane permeabilization that constitute hallmarks of apoptosis. Prevention of caspase activation and/or mitochondrial damage avoids mitotic catastrophe, indicating that this form of cell death indeed constitutes a special case of apoptosis. Importantly, the suppression of mitotic catastrophe can favor asymmetric division and the generation of aneuploid cells. This delineates a molecular pathway through which failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities which are likely to participate in oncogenesis.  相似文献   

16.
Overexpressed cyclin E in tumours is a prognosticator for poor patient outcome. Cells that overexpress cyclin E have been shown to be impaired in S-phase progression and exhibit genetic instability that may drive this subset of cancers. However, the origin for genetic instability caused by cyclin E overexpression is unknown. Homologous recombination plays an important role in S-phase progression and is also regulated by the same proteins that regulate cyclin E-associated kinase activity, i.e., p53 and p21. To test the hypothesis that overexpressed cyclin E causes genetic instability through homologous recombination, we investigated the effect of cyclin E overexpression on homologous recombination in the hprt gene in a Chinese hamster cell line. Although cyclin E overexpression shortened the G1 phase in the cell cycle as expected, we could see no change in neither spontaneous nor etoposide-induced recombination. Also, overexpression of cyclin E did not affect the repair of DNA double-strand breaks and failed to potentiate the cytotoxic effects of etoposide. Our data suggest that genetic instability caused by overexpression of cyclin E is not mediated by aberrant homologous recombination.  相似文献   

17.
The p53 tumor suppressor protein can induce both cell cycle arrest and apoptosis in DNA-damaged cells. In human carcinoma cell lines expressing wild-type p53, expression of E7 allowed the continuation of full cell cycle progression following DNA damage, indicating that E7 can overcome both G1 and G2 blocks imposed by p53. E7 does not interfere with the initial steps of the p53 response, however, and E7 expressing cells showed enhanced expression of p21(waf1/cip1) and reductions in cyclin E- and A-associated kinase activities following DNA damage. One function of cyclin-dependent kinases is to phosphorylate pRB and activate E2F, thus allowing entry into DNA synthesis. Although E7 may substitute for this activity during cell division by directly targeting pRB, continued cell cycle progression in E7-expressing cells was associated with phosphorylation of pRB, suggesting that E7 permits the retention of some cyclin-dependent kinase activity. One source of this activity may be the E7-associated kinase, which was not inhibited following DNA damage. Despite allowing cell cycle progression, E7 was unable to protect cells from p53-induced apoptosis, and the elevated apoptotic response seen in these cells correlated with the reduction of cyclin A-associated kinase activity. It is possible that inefficient cyclin A-dependent inactivation of E2F at the end of DNA synthesis contributes to the enhanced apoptosis displayed by E7-expressing cells.  相似文献   

18.
19.
20.
The human cytomegalovirus (HCMV) IE86 protein induces the human fibroblast cell cycle from G(0)/G(1) to G(1)/S, where cell cycle progression stops. Cells with a wild-type, mutated, or null p53 or cells with null p21 protein were transduced with replication-deficient adenoviruses expressing HCMV IE86 protein or cellular p53 or p21. Even though S-phase genes were activated in a p53 wild-type cell, IE86 protein also induced phospho-Ser(15) p53 and p21 independent of p14ARF but dependent on ATM kinase. These cells did not enter the S phase. In human p53 mutant, p53 null, or p21 null cells, IE86 protein did not up-regulate p21, cellular DNA synthesis was not inhibited, but cell division was inhibited. Cells accumulated in the G(2)/M phase, and there was increased cyclin-dependent kinase 1/cyclin B1 activity. Although the HCMV IE86 protein increases cellular E2F activity, it also blocks cell division in both p53(+/+) and p53(-/-) cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号