首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
3.
4.
Precise coordination between stamen and pistil development is essential to make a fertile flower. Mutations impairing stamen filament elongation, pollen maturation, or anther dehiscence will cause male sterility. Deficiency in plant hormone gibberellin (GA) causes male sterility due to accumulation of DELLA proteins, and GA triggers DELLA degradation to promote stamen development. Deficiency in plant hormone jasmonate (JA) also causes male sterility. However, little is known about the relationship between GA and JA in controlling stamen development. Here, we show that MYB21, MYB24, and MYB57 are GA-dependent stamen-enriched genes. Loss-of-function of two DELLAs RGA and RGL2 restores the expression of these three MYB genes together with restoration of stamen filament growth in GA-deficient plants. Genetic analysis showed that the myb21-t1 myb24-t1 myb57-t1 triple mutant confers a short stamen phenotype leading to male sterility. Further genetic and molecular studies demonstrate that GA suppresses DELLAs to mobilize the expression of the key JA biosynthesis gene DAD1, and this is consistent with the observation that the JA content in the young flower buds of the GA-deficient quadruple mutant ga1-3 gai-t6 rga-t2 rgl1-1 is much lower than that in the WT. We conclude that GA promotes JA biosynthesis to control the expression of MYB21, MYB24, and MYB57. Therefore, we have established a hierarchical relationship between GA and JA in that modulation of JA pathway by GA is one of the prerequisites for GA to regulate the normal stamen development in Arabidopsis.  相似文献   

5.
Millar AA  Gubler F 《The Plant cell》2005,17(3):705-721
The functions of the vast majority of genes encoding R2R3 MYB domain proteins remain unknown. The closely related MYB33 and MYB65 genes of Arabidopsis thaliana have high sequence similarity to the barley (Hordeum vulgare) GAMYB gene. T-DNA insertional mutants were isolated for both genes, and a myb33 myb65 double mutant was defective in anther development. In myb33 myb65 anthers, the tapetum undergoes hypertrophy at the pollen mother cell stage, resulting in premeiotic abortion of pollen development. However, myb33 myb65 sterility was conditional, where fertility increased both under higher light or lower temperature conditions. Thus, MYB33/MYB65 facilitate, but are not essential for, anther development. Neither single mutant displayed a phenotype, implying that MYB33 and MYB65 are functionally redundant. Consistent with functional redundancy, promoter-beta-glucuronidase (GUS) fusions of MYB33 and MYB65 gave identical expression patterns in flowers (sepals, style, receptacle, anther filaments, and connective but not in anthers themselves), shoot apices, and root tips. By contrast, expression of a MYB33:GUS translational fusion in flowers was solely in young anthers (consistent with the male sterile phenotype), and no staining was seen in shoot meristems or root tips. A microRNA target sequence is present in the MYB genes, and mutating this sequence in the MYB33:GUS fusion results in an expanded expression pattern, in tissues similar to that observed in the promoter-GUS lines, implying that the microRNA target sequence is restricting MYB33 expression. Arabidopsis transformed with MYB33 containing the mutated microRNA target had dramatic pleiotrophic developmental defects, suggesting that restricting MYB33 expression, especially in the shoot apices, is essential for proper plant development.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Gibberellin (GA) and jasmonate (JA) are two types of phytohormones that play important roles during stamen development. For example, Arabidopsis plants deficient in either of GA or JA develop short stamens. An apparent question to ask is whether GA action and JA action during stamen filament development are independent of each other or are in a hierarchy. Recent studies showed that GA modulates the expression of genes essential for JA biosynthesis to promote JA production and high levels of JA will induce the expression of three MYB genes MYB21, MYB24 and MYB57. These three MYB genes are crucial factors for the normal development of stamen filament in Arabidopsis.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号