首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA(4). The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3' consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

2.
Nine biological species, or mating populations (MPs), denoted by letters A to I, and at least 29 anamorphic Fusarium species have been identified within the Gibberella fujikuroi species complex. Members of this species complex are the only species of the genus Fusarium that contain the gibberellin (GA) biosynthetic gene cluster or at least parts of it. However, the ability of fusaria to produce GAs is so far restricted to Fusarium fujikuroi, although at least six other MPs contain all the genes of the GA biosynthetic gene cluster. Members of Fusarium proliferatum, the closest related species, have lost the ability to produce GAs as a result of the accumulation of several mutations in the coding and 5' noncoding regions of genes P450-4 and P450-1, both encoding cytochrome P450 monooxygenases, resulting in metabolic blocks at the early stages of GA biosynthesis. In this study, we have determined additional enzymatic blocks at the first specific steps in the GA biosynthesis pathway of F. proliferatum: the synthesis of geranylgeranyl diphosphate and the synthesis of ent-kaurene. Complementation of these enzymatic blocks by transferring the corresponding genes from GA-producing F. fujikuroi to F. proliferatum resulted in the restoration of GA production. We discuss the reasons for Fusarium species outside the G. fujikuroi species complex having no GA biosynthetic genes, whereas species distantly related to Fusarium, e.g., Sphaceloma spp. and Phaeosphaeria spp., produce GAs.  相似文献   

3.
The plant hormone, gibberellin (GA), regulates plant growth and development. It was first isolated as a superelongation-promoting diterpenoid from the fungus, Gibberella fujikuroi. G. fujikuroi uses different GA biosynthetic intermediates from those in plants to produce GA3. Another class of GA-producing fungus, Phaeosphaeria sp. L487, synthesizes GA1 by using the same intermediates as those in plants. A molecular analysis of GA biosynthesis in Phaeosphaeria sp. has revealed that diterpene cyclase and cytochrome P450 monooxygenases were involved in the plant-like biosynthesis of GA1. Fungal ent-kaurene synthase is a bifunctional cyclase. Subsequent oxidation steps are catalyzed by P450s, leading to biologically active GA1. GA biosynthesis in plants is divided into three steps involving soluble enzymes and membrane-bound cytochrome P450. The activation of plant GAs is catalyzed by soluble 2-oxoglutarate-dependent dioxygenases, which is in contrast to the catalysis of fungal GA biosynthesis. This difference suggests that the origin of fungal GA biosynthesis is evolutionally independent of that in plants.  相似文献   

4.
Differential screening of aGibberella fujikuroicDNA library was used to successfully clone and identify genes involved in the pathway of gibberellin biosynthesis. Several cDNA clones that hybridized preferentially to a cDNA probe prepared from mycelium induced for gibberellin production were isolated and characterized. The deduced amino acid sequences of two (identical) clones contained the conserved heme-binding motif of cytochrome P450 monooxygenases (FXXGXXXCXG). One of these cDNA fragments was used as a homologous probe for the screening of a genomic library. A hybridizing 6.7-kb genomicSalI fragment was cloned into pUC19. The sequencing of this clone revealed that a second cytochrome P450 monooxygenase gene was closely linked to the first one. Since at least four cytochrome P450 monooxygenase-catalyzed steps are involved in the synthesis of gibberellins, chromosome walking was performed to find a further gene of this family or other genes involved in gibberellin pathway. Next to the two P450 monooxygenase genes, a putative geranylgeranyl diphosphate synthase gene, the copalyl diphosphate synthase gene, which is the first specific gene of the gibberellin pathway, and a third P450 monooxygenase gene were identified. These results suggest that at least some of the genes involved in the biosynthesis of gibberellins are closely linked in a gene cluster inG. fujikuroi,as has been recently found for other “dispensable” pathways in fungi.  相似文献   

5.
The steps involved in kaurenolide and fujenoic acids biosynthesis, from ent-kauradienoic acid and ent-6alpha,7alpha-dihydroxykaurenoic acid, respectively, are demonstrated in the gibberellin (GA)-deficient Gibberella fujikuroi mutant SG139, which lacks the entire GA-biosynthesis gene cluster, complemented with the P450-1 gene of GA biosynthesis (SG139-P450-1). ent-[2H]Kauradienoic acid was efficiently converted into 7beta-hydroxy[2H]kaurenolide and 7beta,18-dihydroxy[2H]kaurenolide by the cultures while 7beta-hydroxy[2H]kaurenolide was transformed into 7beta,18-dihydroxy[2H]kaurenolide. The limiting step was found to be hydroxylation at C-18. In addition, SG139-P450-1 transformed ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid into [14C4]fujenoic acid and [14C4]fujenoic triacid. Fujenal was also converted into the same products but was demonstrated not to be an intermediate in this sequence. All the above reactions were absent in the mutant SG139 and were suppressed in the wild-type strain ACC917 by disruption of the P450-1 gene. Kaurenolide and fujenoic acids synthesis were associated with the microsomal fraction and showed an absolute requirement for NADPH or NADH, all properties of cytochrome P450 monooxygenases. Only 7beta-hydroxy[14C4]kaurenolide synthesis and not further 18-hydroxylation was detected in the microsomal fraction. The substrates for the P450-1 monooxygenase, ent-kaurenoic acid and [2H]GA12, efficiently inhibited kaurenolide synthesis with I50 values of 3 and 6 microM, respectively. Both substrates also inhibited ent-6alpha,7alpha-dihydroxy[14C4]kaurenoic acid metabolism by SG139-P450-1. Conversely, [14C4]GA14 synthesis from [14C4]GA12-aldehyde was inhibited by ent-[2H]kauradienoic acid and fujenal with I50 values of 10 and 30 microM, respectively. These results demonstrate that kaurenolides and seco-ring B kaurenoids are formed by the P450-1 monooxygenase (GA14 synthase) of G. fujikuroi and are thus side products that probably result from stabilization of radical intermediates involved in GA14 synthesis.  相似文献   

6.
To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment.  相似文献   

7.
8.
Recently, six genes of the gibberellin (GA) biosynthesis gene cluster in Gibberella fujikuroi were cloned and the functions of five of these genes were determined. Here we describe the function of the sixth gene, P450-3, and the cloning and functional analysis of a seventh gene, orf3, located at the left border of the gene cluster. We have thereby defined the complete GA biosynthesis gene cluster in this fungus. The predicted amino acid sequence of orf3 revealed no close homology to known proteins. High performance liquid chromatography and gas chromatography-mass spectrometry analyses of the culture fluid of knock-out mutants identified GA1 and GA4, rather than GA3 and GA7, as the major C19-GA products, suggesting that orf3 encodes the GA4 1,2-desaturase. This was confirmed by transformation of the SG139 mutant, which lacks the GA biosynthesis gene cluster, with the desaturase gene renamed des. The transformants converted GA4 to GA7, and also metabolized GA9 (3-deoxyGA4) to GA120 (1,2-didehydroGA9), but the 2alpha-hydroxylated compound GA40 was the major product in this case. We demonstrate also by gene disruption that P450-3, one of the four cytochrome P450 monooxygenase genes in the GA gene cluster, encodes the 13-hydroxylase, which catalyzes the conversion of GA7 to GA3, in the last step of the pathway. This enzyme also catalyzes the 13-hydroxylation of GA4 to GA1. Disruption of the des gene in an UV-induced P450-3 mutant produced a double mutant lacking both desaturase and 13-hydroxylase activities that accumulated high amounts of the commercially important GA4. The des and P450-3 genes differ in their regulation by nitrogen metabolite repression. In common with the other five GA biosynthesis genes, expression of the desaturase gene is repressed by high amounts of nitrogen in the culture medium, whereas P450-3 is the only gene in the cluster not repressed by nitrogen.  相似文献   

9.
ent-Kaurene is a tetracyclic hydrocarbon precursor for gibberellins (GAs) in plants and fungi. To address whether fungal GA biosynthesis enzymes function in plants, we generated transgenic Arabidopsis plants overexpressing ent-kaurene synthase (GfCPS/KS) from a GA-producing fungus Gibberella fujikuroi. GfCPS/KS catalyzes a two-step reaction corresponding to ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) activities in plants. When GfCPS/KS was overexpressed and targeted to plastids, a range of GA-deficient phenotypes of the ga1-3 and ga2-1 mutants (defective in CPS and KS, respectively) were restored to wild type. Unexpectedly, the transgenic lines overproducing GfCPS/KS emitted the GA precursor ent-kaurene into the headspace besides its accumulation in the plant body. When co-cultivated with the ent-kaurene overproducers in a closed environment, the airborne ent-kaurene was able to fully complement the dwarf phenotype of ga1-3 and ga2-1 mutants, but not that of the ga3-1 mutant (defective in ent-kaurene oxidase). These results suggest that ent-kaurene may be efficiently metabolized into bioactive GAs in Arabidopsis when supplied as a volatile. We also provide evidence that ent-kaurene is released in the headspace of wild-type Chamaecyparis obtusa and Cryptomeria japonica plants, suggesting the occurrence of this hydrocarbon GA precursor as a volatile in nature.  相似文献   

10.
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA4. The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3′ consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid.  相似文献   

11.
The fungus Gibberella fujikuroi is used for the commercial production of gibberellins (GAs), which it produces in very large quantities. Four of the seven GA biosynthetic genes in this species encode cytochrome P450 monooxygenases, which function in association with NADPH-cytochrome P450 reductases (CPRs) that mediate the transfer of electrons from NADPH to the P450 monooxygenases. Only one cpr gene (cpr-Gf) was found in G. fujikuroi and cloned by a PCR approach. The encoded protein contains the conserved CPR functional domains, including the FAD, FMN, and NADPH binding motifs. cpr-Gf disruption mutants were viable but showed a reduced growth rate. Furthermore, disruption resulted in total loss of GA(3), GA(4), and GA(7) production, but low levels of non-hydroxylated C(20)-GAs (GA(15) and GA(24)) were still detected. In addition, the knock-out mutants were much more sensitive to benzoate than the wild type due to loss of activity of another P450 monooxygenase, the detoxifying enzyme, benzoate p-hydroxylase. The UV-induced mutant of G. fujikuroi, SG138, which was shown to be blocked at most of the GA biosynthetic steps catalyzed by P450 monooxygenases, displayed the same phenotype. Sequence analysis of the mutant cpr allele in SG138 revealed a nonsense mutation at amino acid position 627. The mutant was complemented with the cpr-Gf and the Aspergillus niger cprA genes, both genes fully restoring the ability to produce GAs. Northern blot analysis revealed co-regulated expression of the cpr-Gf gene and the GA biosynthetic genes P450-1, P450-2, P450-4 under GA production conditions (nitrogen starvation). In addition, expression of cpr-Gf is induced by benzoate. These results indicate that CPR-Gf is the main but not the only electron donor for several P450 monooxygenases from primary and secondary metabolism.  相似文献   

12.
Gibberella fujikuroi is a species complex with at least nine different biological species, termed mating populations (MPs) A to I (MP-A to MP-I), known to produce many different secondary metabolites. So far, gibberellin (GA) production is restricted to Fusarium fujikuroi (G. fujikuroi MP-C), although at least five other MPs contain all biosynthetic genes. Here, we analyze the GA gene cluster and GA pathway in the closest related species, Fusarium proliferatum (MP-D), and demonstrate that the GA genes share a high degree of sequence homology with the corresponding genes of MP-C. The GA production capacity was restored after integration of the entire GA gene cluster from MP-C, indicating the existence of an active regulation system in F. proliferatum. The results further indicate that one reason for the loss of GA production is the accumulation of several mutations in the coding and 5' noncoding regions of the ent-kaurene oxidase gene, P450-4.  相似文献   

13.
We have used fusions of gibberellin biosynthesis enzymes to green fluorescent protein (GFP) to determine the subcellular localization of the early steps of the pathway. Gibberellin biosynthesis from geranylgeranyl diphosphate is catalysed by enzymes of the terpene cyclase, cytochrome P450 mono-oxygenase and 2-oxoglutarate-dependent dioxygenase classes. We show that the N-terminal pre-sequences of the Arabidopsis thaliana terpene cyclases copalyl diphosphate synthase (AtCPS1) and ent-kaurene synthase (AtKS1) direct GFP to chloroplasts in transient assays following microprojectile bombardment of tobacco leaves. The AtKS1-GFP fusion is also imported by isolated pea chloroplasts. The N-terminal portion of the cytochrome P450 protein ent-kaurene oxidase (AtKO1) directs GFP to chloroplasts in tobacco leaf transient assays. Chloroplast import assays with 35S-labelled AtKO1 protein show that it is targeted to the outer face of the chloroplast envelope. The leader sequences of the two ent-kaurenoic acid oxidases (AtKAO1 and AtKAO2) from Arabidopsis direct GFP to the endoplasmic reticulum. These data suggest that the AtKO1 protein links the plastid- and endoplasmic reticulum-located steps of the gibberellin biosynthesis pathway by association with the outer envelope of the plastid.  相似文献   

14.
15.
As well as being phytohormones, gibberellins (GAs) are present in some fungi and bacteria. Indeed, GAs were first discovered in the fungus Gibberella fujikuroi, from which gibberellic acid (GA3) and other GAs are produced commercially. Although higher plants and the fungus produce structurally identical GAs, there are important differences in the pathways and enzymes involved. This has become particularly apparent with the identification of almost all of the genes for GA-biosynthesis in Arabidopsis thaliana and G. fujikuroi, following the sequencing of the Arabidopsis genome and the detection of a GA-biosynthesis gene cluster in the fungus. For example, 3b-hydroxylation occurs early in the pathway in G. fujikuroi and is catalyzed by a cytochrome P450 monooxygenase, whereas it is usually the final step in plants and is catalyzed by 2-oxoglutarate-dependent dioxygenases. Similarly, 20-oxidation is catalyzed by dioxygenases in plants and a cytochrome P450 in the fungus. Even where cytochrome P450s have equivalent functions in plants and Gibberella, they are unrelated in terms of amino acid sequence. These profound differences indicate that higher plants and fungi have evolved their complex biosynthetic pathways to GAs independently and not by horizontal gene transfer.  相似文献   

16.
Gibberella fujikuroi is a species-rich monophyletic complex of at least nine sexually fertile biological species (mating populations, MP-A to MP-I) and more than 30 anamorphs in the genus Fusarium. They produce a variety of secondary metabolites, such as fumonisins, fusaproliferin, moniliformin, beauvericin, fusaric acid, and gibberellins (GAs), a group of plant hormones. In this study, we examined for the first time all nine sexually fertile species (MPs) and additional anamorphs within and outside the G. fujikuroi species complex for the presence of GA biosynthetic genes. So far, the ability to produce GAs was described only for Fusarium fujikuroi (G. fujikuroi MP-C), which contains seven clustered genes in the genome all participating in GA biosynthesis. We show that six other MPs (MPs B, D, E, F, G, and I) and most of the anamorphs within the species complex also contain the entire gene cluster, except for F. verticillioides (MP-A), and F. circinatum (MP-H), containing only parts of it. Despite the presence of the entire gene cluster in most of the species within the G. fujikuroi species complex, expression of GA biosynthetic genes and GA production were detected only in F. fujikuroi (MP-C) and one isolate of F. konzum (MP-I). We used two new molecular marker genes, P450-4 from the GA gene cluster, and cpr, encoding the highly conserved NADPH cytochrome P450 reductase to study phylogenetic relationships within the G. fujikuroi species complex. The molecular phylogenetic studies for both genes have revealed good agreement with phylogenetic trees inferred from other genes. Furthermore, we discuss the role and evolutionary origin of the GA biosynthetic gene cluster.  相似文献   

17.
18.
The gibberellin biosynthesis pathway is well defined in Arabidopsis and features seven key enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase, GA 3-oxidase, and GA 2-oxidase. The Arabidopsis genes were used to identify their counterparts in wheat and the TaCPS, TaKS, TaKO, and TaKAO genes were cloned from Chinese Spring wheat. In order to determine their chromosome locations, expression patterns and feedback regulations, three TaCPS genes, three TaKS genes, three TaKO genes, and three TaKAO genes were cloned from Chinese Spring wheat. They are mainly located on chromosomes 7A, 7B, 7D and 2A, 2B and 2D. The expression patterns of TaCPS, TaKS, TaKO, and TaKAO genes in wheat leaves, young spikes, peduncles, the third and forth internodes were investigated using quantitative PCR. The results showed that all the genes were constitutively expressed in wheat, but their relative expression levels varied in different tissues. They were mainly transcribed in stems, secondly in leaves and spikes, and the least in peduncles. Feedback regulation of the TaCPS, TaKS, TaKO, and TaKAO genes was not evident. These results indicate that all the genes and their homologs may play important roles in the developmental processes of wheat, but each of the homologs may function differently in different tissues or during different developmental stages.  相似文献   

19.
We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号