首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The permeabilization of yeast cells with methanol, ethanol, and isopropyl alcohol under various conditions was studied to develop the preparation method of high activity whole cell biocatalysts. Recombinant Saccharomyces cerevisiae, which intracellularly overexpresses glyoxalase I and catalyzes the conversion of methylglyoxal to S‐lactoylglutathione in the presence of glutathione, was used as the model system. The permeabilization treatments with alcohols significantly enhanced the activities of yeast cells. Especially, the initial S‐lactoylglutathione production rates of cells permeabilized with 40% ethanol and isopropyl alcohol solutions for 10 min at 4°C were high and were 364 and 582 times larger than those of untreated cells, respectively. These permeabilized yeast cells retained high activities during repeated batch reactions. Even in third batch reaction, they showed approximately 70–80% of the activity in the first batch. The plasma membrane of S. cerevisiae cells was damaged by the treatment with alcohol solutions in such a way that leakage of glyoxalase I from the cells is rather small and that both substrate and product show very high permeability. The initial S‐lactoylglutathione production rates of these permeabilized cells were 1.5–2.5 times larger than those of glyoxalase I in cell extracts prepared by ethyl acetate method from the same amount of cells. These results demonstrate that the recombinant S. cerevisiae cells permeabilized with alcohol solutions under the optimum condition are very effective whole cell biocatalysts. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 54–60, 1999.  相似文献   

2.
A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects—the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer's yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculentSaccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.  相似文献   

3.
Incubation of flocculent cells of a brewing strain of Saccharomyces cerevisiae of the NewFlo phenotype for 8–12 h, in the absence of either carbon or nitrogen source, did not induce a loss of flocculation, although an increase (about two times) in the number of cells occurred in nitrogen starved cells. The addition of glucose or ammonium sulphate to carbon or nitrogen starved cells, respectively, triggered a rapid loss of flocculation.  相似文献   

4.
M H Straver  G Smit    J W Kijne 《Applied microbiology》1994,60(8):2754-2758
Analysis of a shear supernatant from flocculent, "fimbriated" Saccharomyces cerevisiae brewer's yeast cells revealed the presence of a protein involved in flocculation of the yeast cells and therefore designated a flocculin. The molecular mass of the flocculin was estimated to be over 300 kDa, as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel permeation chromatography of the flocculin yielded an aggregate with an apparent molecular weight of > 2,000. The flocculin was found to be protease sensitive, and the sequence of its 16 N-terminal amino acids revealed at least 69% identity with the predicted N terminus of the putative protein encoded by the flocculation gene FLO1. The flocculin was isolated from flocculent S. cerevisiae cells, whereas only a low amount of flocculin, if any, could be isolated from nonflocculent cells. The flocculin was found to stimulate the flocculation ability of flocculent yeast cells without displaying lectinlike activity (that is, the ability to agglutinate yeast cells).  相似文献   

5.
Co-flocculation between cells of beer yeast IFO 2018, a flocculent strain, and non-flocculent strains was investigated by means of a chemical modification method. Treatment with periodate deprived non-flocculent cells, but not flocculent cells, of the ability to co-flocculate. Treatment with mercaptoethanol or photo-irradiation in the presence of methylene blue deprived flocculent cells, but not non-flocculent cells, of the co-flocculating ability. Mercaptoethanol-treated or photoirradiated flocculent cells (beer yeast IFO 2018) co-flocculated with periodate-treated flocculent cells, but periodate-treated cells subsequently subjected to mercaptoethanol treatment or photoirradiation neither flocculated by themselves nor co-flocculated with other cells. Thus, it is likely that both protein and carbohydrate components of the yeast cell surface play important roles in the mutual recognition and intercellular interaction involved in flocculation. It is strongly suggested that the essential carbohydrate which is widely distributed among Saccharomyces species is the mannan fraction on the cell wall, and that a flocculent yeast strain produces surface protein component(s) which recognize and bind the mannan component of adjacent cells.  相似文献   

6.
A flocculent strain of Saccharomyces cerevisiae S646-1B accumulated more Cu2+ (81 nmol mg–1 dry wt) than the isogenic (except for the marker genes ade1 and trp1 and the gene FLO1) non-flocculent strain S646-8D (30 nmol mg–1 dry wt), in the first 10 min of contact of the cells with Cu2+. Additionally, this strain flocculated in solutions of 0.2 mM Cu2+, Ni2+, Zn2+ and Cd2+. The potential of using flocculent strains in the bioremediation of heavy metals contaminated waste waters is discussed.  相似文献   

7.
Fourteen yeast strains were screened for production of 2-phenylethanol from l-phenylalanine with molasses as carbon source. Up to 1 g 2-phenylethanol l–1 was obtained. Using oleyl alcohol as a second phase for in situ product removal to enhance the production of 2-phenylethanol increased the yield to about 3 g 2-phenylethanol l–1 at 35 °C. The most productive strains were Kluyveromyces marxianus CBS 600 and CBS 397.  相似文献   

8.
Conditions were optimized for rapid release and improved regeneration of protoplasts ofSaccharomyces cerevisiae NCIM 3458. Rapid protoplast release was also obtained with representatives of several other yeast genera under the modified conditions of treatment. The application of the procedure in construction of a highly flocculentSaccharomyces cerevisiae with a killer character is described. Fusion was effected between UV-killed protoplasts ofS. cerevisiae NCIM 3578 with a killer character and live protoplasts of the highly flocculentS. cerevisiae NCIM 3528 in the presence of polyethylene glycol (PEG) 6000. Fusants were selected using benomyl resistance as marker, the killer toxin producer rather than the highly flocculent yeast being resistant to the fungicide at a concentration of 100 g ml–1. Fusants were also characterized by their DNA contents, capacity for ethanolic fermentation of molasses sugar and levels of invertase, alcohol dehydrogenase and pyruvate decarboxylase activities.  相似文献   

9.
Lactulose production from lactose and fructose was investigated with several commercial -galactosidases. The enzyme from Kluyveromyces lactis exhibited the highest lactulose productivity among the -galactosidases tested. The reaction conditions for lactulose production were optimized using cells that had been permeabilized by treatment with 50% (v/v) ethanol: cell concentration, 10.4 g l–1; concentration of substrates, 40% (w/v) lactose and 20% (w/v) fructose; temperature, 60°C; pH 7.0. Under these conditions, the permeabilized cells produced approximately 20 g l–1 lactulose in 3 h with a lactulose productivity of 6.8 g l–1 h–1. These results represent 1.3- and 2.1-fold increases in lactulose concentration and productivity compared with untreated washed cells. This is the first reported trial of enzymatic synthesis of lactulose using permeabilized yeast cells.  相似文献   

10.
Flocculation of yeasts is a cell–cell aggregation phenomenon which is driven by interactions between cell wall lectins and cell wall heteropolysaccharides. In Sabouraud medium, Kluyveromyces bulgaricus was highly flocculent. Incubation of flocculent K. bulgaricus cells with EDTA or Hecameg® led to extracts showing hemagglutinating and flocculating properties. Purification of the extracts by native PAGE gave two bands which allowed flocculation of deflocculated K. bulgaricus. Both bands with specific reflocculating activity were composed of five subunits, of which only three possessed weak reflocculating activity upon deflocculated yeast. The mixture of these three proteins allow the recovery of initial specific reflocculating activity of the complex. These three proteins, denoted p28, p36 and p48, presented, in their first 15 amino acids, homologies with glycolysis enzymes, i.e., 3-phosphoglycerate mutase, glyceraldehyde-3-phosphate dehydrogenase and enolase, respectively. However, no such enzymatic activity could be detected in the crude extract issued from treatment with EDTA and Hecameg® of flocculent yeast cells. When yeasts had grown in glucose poor medium, flocculation was drastically affected. The EDTA and Hecameg® crude extracts showed weak reflocculating activity. After PAGE, the protein complexes did not appear in the EDTA extract, but they did appear in the Hecameg® crude extract. These results suggest that: (i) self-flocculation of K. bulgaricus depends on the expression of different floc-forming protein complex, (ii) these proteins are galactose specific lectins showing homologies in their primary structure with glycolysis enzymes.  相似文献   

11.
Ethyl(R)-4-chloro-3-hydroxybutanoate ((R)-CHBE) are obtained by cetyltrimetylammonium bromide (CTAB) permeabilized fresh brewer’s yeast whole cells bioconversion of ethyl 4-chloro-3-oxobutanoate (COBE ) in the presence of allyl bromide. The results showed that the activities of alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) in CTAB permeabilized brewer’s yeast cells increased 525 and 7.9-fold, respectively, compared with that in the nonpermeabilized cells and had high enantioselectivity to convert COBE to (R)-CHBE. As one of co-substrates, glucose-6-phosphate was preprepared using glucose phosphorylation by hexokinase-catalyzed of CTAB permeabilized brewer’s yeast cells. In a two phase reaction system with n-butyl acetate as organic solvent and with 2-propanol and glucose-6-phosphate as co-substrates, the highest (R)-CHBE concentration of 447 mM was obtained with 110–130 g/l of the CTAB permeabilized cells at optimized pH, temperature, feeding rate and the shake speed of 125 r/min. The yield and enantiomeric excess (ee) of (R)-CHBE reached 99.5 and 99%, respectively, within 6 h.  相似文献   

12.
13.
Mature human growth hormone (hGH) cDNA was cloned by homologous recombination into the yeast Pichia pastoris genome. The hGH gene expression was placed under the control of the methanol-inducible alcohol oxidase 1 (AOX1) gene promoter and the Saccharomyces cerevisiae -factor signal sequence to direct the secretion of recombinant human growth hormone (rhGH) into the growth medium. O2-limited induction of recombinant yeast strains in shake tubes with 3 ml of culture medium produced up to 11 mg rhGH l–1, while high cell density cultures using a 2-l bioreactor produced about 49 mg rhGH l–1 achieving 40% of total protein of the culture medium supernatant.  相似文献   

14.
The present work reviews and critically discusses the aspects that influence yeast flocculation, namely the chemical characteristics of the medium (pH and the presence of bivalent ions), fermentation conditions (oxygen, sugars, growth temperature and ethanol concentration) and the expression of specific genes such as FLO1, Lg‐FLO1, FLO5, FLO8, FLO9 and FLO10. In addition, the metabolic control of loss and onset of flocculation is reviewed and updated. Flocculation has been traditionally used in brewing production as an easy and off‐cost cell‐broth separation process. The advantages of using flocculent yeast strains in the production of other alcoholic beverages (wine, cachaça and sparkling wine), in the production of renewal fuels (bio‐ethanol), in modern biotechnology (production of heterologous proteins) and in environmental applications (bioremediation of heavy metals) are highlighted. Finally, the possibility of aggregation of yeast cells in flocs, as an example of social behaviour (a communitarian strategy for long‐time survival or a means of protection against negative environmental conditions), is discussed.  相似文献   

15.
Flocculation is an eco-friendly process of cell separation, which has been traditionally exploited by the brewing industry. Cell surface charge (CSC), cell surface hydrophobicity (CSH) and the presence of active flocculins, during the growth of two (NCYC 1195 and NCYC 1214) ale brewing flocculent strains, belonging to the NewFlo phenotype, were examined. Ale strains, in exponential phase of growth, were not flocculent and did not present active flocculent lectins on the cell surface; in contrast, the same strains, in stationary phase of growth, were highly flocculent (>98%) and presented a hydrophobicity of approximately three to seven times higher than in exponential phase. No relationship between growth phase, flocculation and CSC was observed. For comparative purposes, a constitutively flocculent strain (S646-1B) and its isogenic non-flocculent strain (S646-8D) were also used. The treatment of ale brewing and S646-1B strains with pronase E originated a loss of flocculation and a strong reduction of CSH; S646-1B pronase E-treated cells displayed a similar CSH as the non-treated S646-8D cells. The treatment of the S646-8D strain with protease did not reduce CSH. In conclusion, the increase of CSH observed at the onset of flocculation of ale strains is a consequence of the presence of flocculins on the yeast cell surface and not the cause of yeast flocculation. CSH and CSC play a minor role in the auto-aggregation of the ale strains since the degree of flocculation is defined, primarily, by the presence of active flocculins on the yeast cell wall.  相似文献   

16.
A stable mutant flocculent yeast strain of Saccharomyces cerevisiae KRM-1 was isolated during repeated-batch ethanol fermentation using kitchen refuse as the medium. The mechanism of flocculation and interaction with the medium was investigated. According to sugar inhibition assay, it was found that the mutant flocculent strain was a NewFlo phenotype. Flocculation was completely inhibited by protease, proteinase K and partially reduced by treatments with carbohydrate-hydrolyzing enzymes. Flocculation ability showed no difference for pH 3.0–6.0. Furthermore, the mutant flocculent yeast provided repeated-batch cultivations employing cell recycles by flocculation over 10 rounds of cultivation for the production of ethanol from kitchen refuse medium, resulting in relatively high productivity averaging 8.25 g/L/h over 10 batches and with a maximal of 10.08 g/L/h in the final batch. Cell recycle by flocculation was fast and convenient, and could therefore be applicable for industrial-scale ethanol production.  相似文献   

17.
AIMS: To examine the role of the nutrients on the onset of flocculation in an ale-brewing strain, Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was evaluated using the method of Soares, E.V. and Vroman, A. [Journal of Applied Microbiology (2003) 95, 325]. For cells grown in chemically defined medium (yeast nitrogen base with glucose) or in rich medium (containing yeast extract, peptone and fermentable sugars: fructose or maltose), the onset of flocculation occurred after the end of exponential respiro-fermentative phase of growth being coincident with the attainment of the lower level of carbon source in the culture medium. Cells, in exponential respiro-fermentative phase of growth, transferred to a glucose-containing medium without nitrogen source, developed a flocculent phenotype, while these carbon source starved cells, in the presence of all other nutrients that support growth, did not flocculate. In addition, cells in exponential phase of growth, under catabolite repression, when transferred to a medium containing 0.2% (w/v) of fermentable sugar (fructose or maltose) or 2% (v/v) ethanol, showed a rapid triggering of flocculation, while when incubated in 2% (v/v) glycerol did not develop a flocculent phenotype. CONCLUSIONS: The onset of flocculation occurs when a low sugar and/or nitrogen concentration is reached in culture media. The triggering of flocculation is an energetic dependent process influenced by the carbon source metabolism. The presence of external nitrogen source is not necessary for developing a flocculent phenotype. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes to the elucidation of the role of nutrients on the onset of flocculation in NewFlo phenotype yeast strains. This information might be useful to the brewing industry, in the control of yeast flocculation, as the time when the onset of flocculation occurs can determine the fermentation performance and the beer quality.  相似文献   

18.
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS–PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine–SDS–PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the α-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD50 similar to that of the native toxin.  相似文献   

19.
Grape skins as a natural support for yeast immobilization   总被引:1,自引:0,他引:1  
Grape skins were used to immobilize Saccharomyces cerevisiae. In repeated batch fermentations of grape by immobilized and free cells, the maximum specific rate of alcohol production on glucose decreased from 7.98 h–1 at 25 °C to 0.7 h–1 at 5 °C. The rate was approximately twice as high as that on fructose. The rates for free cells were very low. The maximum alcohol yield (0.45 g g–1) was obtained at 5 °C when the immobilized biocatalyst was used.  相似文献   

20.
Summary Multiforms of megamodulin-dependent protein kinases (M-PK) were partially purified from baker's yeast by excluding endogenous megamodulin with histone, and then by gel filtration with Sephadex G-200. The stimulation of M-PK in the presence of Mg2+, Mn2– or Co2+ was enhanced by yeast megamodulin. In addition, similar augmented activity of M-PK was also noted in the presence of Mg2– by megamodulins prepared from E. coli, bovine brain and wheat germ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号