首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutant clones resistant to ACTH-induced desensitization of adenylyl cyclase (Y1DR) were previously isolated from the Y1 mouse adrenocortical tumor cell line. In this study, both parental Y1 cells (Y1DS) and a Y1DR mutant were transfected with a gene encoding the mouse beta 2-adrenergic receptor, and transfectants isolated from both Y1DS and Y1DR cells were shown to express beta 2-adrenergic receptors. These transfectants responded to the beta-adrenergic agonist isoproterenol with increases in adenylyl cyclase activity and steroidogenesis and changes in cell shape. The transfectants were analyzed to determine whether the Y1DR mutation was specific for ACTH-induced desensitization of adenylyl cyclase or also affected desensitization of adenylyl cyclase via the beta 2-adrenergic receptor. Treatment of intact Y1DS transfectants with isoproterenol caused a rapid desensitization of the adenylyl cyclase system to further stimulation by the beta-adrenergic agonist. Treatment of intact cells with isoproterenol did not affect ACTH-stimulated adenylyl cyclase activity, indicating that desensitization was agonist specific or homologous. Y1DR transfectants were resistant to the desensitizing effects of isoproterenol in intact cells as well as in cell homogenates. These results indicate that the mutation in Y1DR transfectants affects a component that is common to the pathways of isoproterenol-induced desensitization and ACTH-induced desensitization of adenylyl cyclase. As determined using the hydrophilic beta-receptor antagonist CGP-12177, isoproterenol caused a rapid sequestration of cell surface receptors in both Y1DS and Y1DR transfectants. From these results we infer that the DR phenotype does not arise from mutations affecting receptor sequestration and that receptor number does not limit the response to isoproterenol in these transfectants.  相似文献   

3.
1. A comparison was made between adrenergic receptor binding properties and catecholamine-stimulated adenylyl cyclase activity in cardiac membrane fractions from the rat and the marmoset monkey. 2. [125I]HEAT and [125I]ICYP were used to determine respectively, the alpha- and beta-adrenergic receptor binding in cardiac membrane fractions. 3. Greatest adrenergic receptor density and degree of specific binding was evident using membranes sedimenting between 6000 and 46,000 g. 4. In rat heart, the ratio of beta- to alpha-adrenergic receptors was 57:43, while for the marmoset this ratio was 92:8. 5. Basal, isoproterenol, sodium fluoride and forskolin-stimulated adenylyl cyclase activities in the rat and marmoset monkey were investigated in several different cardiac membrane fractions. 6. The highest-fold stimulation of adenylyl cyclase activity was present in membranes sedimenting between 0 and 500 g. 7. Adenylyl cyclase activities were higher in the marmoset heart membrane preparations, however the rat heart adenylyl cyclase exhibited greater sensitivity to isoproterenol; ED50 3.8 X 10(-7) M compared with 7.5 X 10(-7) M for the marmoset. 8. Differences between rat and marmoset catecholamine-sensitive adenylyl cyclase activity were apparent when a variety of adrenergic agonists and antagonists were tested. 9. In the marmoset but not the rat, adrenergic antagonists alone stimulated basal adenylyl cyclase activity. 10. Differences in the activation of cardiac adenylyl cyclase by GTP and GMP-PNP were also evident between the rat and the marmoset monkey, particularly with regard to basal and isoproterenol-stimulated activity.  相似文献   

4.
Abstract

A novel screening assay for the identification of baculovirus infected cells expressing membrane receptors was developed by using a replica transfer technique. Sf9 cells were cotransfected with wild type baculoviral DNA and the transfer vector pVL941–β1 containing the coding region of the human β1-adrenergic receptor gene. Infected cells embedded in agarose were incubated with [125I]-iodocyanopindolol and transferred onto filters that were subsequently autoradiographed. This procedure resulted in the isolation of recombinant baculoviruses that expressed β1-adrenergic receptors. Binding assays carried out with [125I]-ICYP indicated that more than 600,000 receptors were expressed per cell, the highest level noted so far for this receptor in genetically engineered cells. Sf9 cells expressing the β1-AR were analysed by ligand binding, competition experiments, adenylyl cyclase stimulation and photoaffinity labeling. These cells express a homogenous population of receptors and display the known pharmacological properties of β1-AR in human tissues.  相似文献   

5.
Palmitoylation is unique among lipid modifications in that it is reversible. In recent years, dynamic palmitoylation of G protein alpha subunits and of their cognate receptors has attracted considerable attention. However, very little is known concerning the acylation/deacylation cycle of the proteins in relation to their activity status. In particular, the relative contribution of the activation and desensitization of the signaling unit to the regulation of the receptors and G proteins palmitoylation state is unknown. To address this issue, we took advantage of the fact that a fusion protein composed of the stimulatory alpha subunit of trimeric G protein (Galpha(s)) covalently attached to the beta(2)-adrenergic receptor (beta(2)AR) as a carboxyl-terminal extension (beta(2)AR-Galpha(s)) can be stimulated by agonists but does not undergo rapid inactivation, desensitization, or internalization. When expressed in Sf9 cells, both the receptor and the Galpha(s) moieties of the fusion protein were found to be palmitoylated via thioester linkage. Stimulation with the beta-adrenergic agonist isoproterenol led to a rapid depalmitoylation of both the beta(2)AR and Galpha(s) and inhibited repalmitoylation. The extent of depalmitoylation induced by a series of agonists was correlated (0.99) with their intrinsic efficacy to stimulate the adenylyl cyclase activity. However, forskolin-stimulated cAMP production did not affect the palmitoylation state of beta(2)AR-Galpha(s), indicating that the agonist-promoted depalmitoylation is linked to conformational changes and not to second messenger generation. Given that, upon activation, the fusion protein mimics the activated receptor-G protein complex but cannot undergo desensitization, the data demonstrate that early steps in the activation process lead to the depalmitoylation of both receptor and G protein and that repalmitoylation requires later events that cannot be accommodated by the activated fusion protein.  相似文献   

6.
We report that a cysteine residue in the human beta 2-adrenergic receptor (beta 2AR) is covalently modified by thioesterification with palmitic acid. By site-directed mutagenesis of the receptor, we have identified Cys341 in the carboxyl tail of the protein as the most likely site of palmitoylation. Mutation of Cys341 to glycine results in a nonpalmitoylated form of the receptor that exhibits a drastically reduced ability to mediate isoproterenol stimulation of adenylyl cyclase. The functional impairment of this mutated beta 2AR is also reflected in a markedly reduced ability to form a guanyl nucleotide-sensitive high affinity state for agonists, characteristic of wild-type receptor. These results indicate that post-translational modification by palmitate of beta 2AR may play a crucial role in the normal coupling of the receptor to the adenylyl cyclase signal transduction system.  相似文献   

7.
Exposure of C6 glioma cells to 1 microM isoproterenol leads to fast desensitization of the beta-adrenergic receptor/adenylyl cyclase system and transient receptor sequestration. It also triggers a very rapid and transient translocation to the plasma membrane of beta-adrenergic receptor kinase (beta ARK), a specific cytoplasmic kinase that phosphorylates only the agonist-occupied form of several G protein-coupled receptors. beta ARK-mediated receptor phosphorylation appears to be a suitable mechanism for the rapid regulation of adrenergic receptor function in the nervous tissue.  相似文献   

8.
Salmeterol is a long-acting beta2-adrenergic receptor (beta 2AR) agonist used clinically to treat asthma. In addition to binding at the active agonist site, it has been proposed that salmeterol also binds with very high affinity at a second site, termed the "exosite", and that this exosite contributes to the long duration of action of salmeterol. To determine the position of the phenyl ring of the aralkyloxyalkyl side chain of salmeterol in the beta 2AR binding site, we designed and synthesized the agonist photoaffinity label [(125)I]iodoazidosalmeterol ([125I]IAS). In direct adenylyl cyclase activation, in effects on adenylyl cyclase after pretreatment of intact cells, and in guinea pig tracheal relaxation assays, IAS and the parent drug salmeterol behave essentially the same. Significantly, the photoreactive azide of IAS is positioned on the phenyl ring at the end of the molecule which is thought to be involved in exosite binding. Carrier-free radioiodinated [125I]IAS was used to photolabel epitope-tagged human beta 2AR in membranes prepared from stably transfected HEK 293 cells. Labeling with [(125)I]IAS was blocked by 10 microM (-)-alprenolol and inhibited by addition of GTP gamma S, and [125I]IAS migrated at the same position on an SDS-PAGE gel as the beta 2AR labeled by the antagonist photoaffinity label [125I]iodoazidobenzylpindolol ([125I]IABP). The labeled receptor was purified on a nickel affinity column and cleaved with factor Xa protease at a specific sequence in the large loop between transmembrane segments 5 and 6, yielding two peptides. While the control antagonist photoaffinity label [125I]IABP labeled both the large N-terminal fragment [containing transmembranes (TMs) 1-5] and the smaller C-terminal fragment (containing TMs 6 and 7), essentially all of the [125I]IAS labeling was on the smaller C-terminal peptide containing TMs 6 and 7. This direct biochemical evidence demonstrates that when salmeterol binds to the receptor, its hydrophobic aryloxyalkyl tail is positioned near TM 6 and/or TM 7. A model of IAS binding to the beta 2AR is proposed.  相似文献   

9.
Preincubation of turkey erythrocytes with isoproterenol results in an impaired ability of beta-adrenergic agonists to stimulate adenylate cyclase in membranes prepared from these cells. The biochemical basis for this agonist-induced desensitization was investigated using the new beta-adrenergic antagonist photoaffinity label [125I]p-azidobenzylcarazolol ([125I]PABC). Exposure of [125I]PABC-labeled turkey erythrocyte membranes to high intensity light leads to specific covalent incorporation of the labeled compound into two polypeptides, Mr approximately equal to 38,000 and 50,000, as determined by sodium dodecyl sulfate-polyacrylamide electrophoresis. Incorporation of [125I]PABC into these two polypeptides is completely blocked by a beta-adrenergic agonist and antagonist consistent with covalent labeling of the beta-adrenergic receptor. After desensitization of the turkey erythrocyte by preincubation with 10(-5) M isoproterenol, the beta-adrenergic receptor polypeptides specifically labeled by [125I]PABC in membranes prepared from desensitized erythrocytes were of larger apparent molecular weight (Mr approximately equal to 42,000 versus 38,000, and 53,000 versus 50,000) compared to controls. When included during the preincubation of the erythrocytes with isoproterenol, the antagonist propranolol (10(-5) M) inhibited both agonist-promoted desensitization of the adenylate cyclase and the altered mobility of the [125I]PABC-labeled receptor polypeptides. These data indicate that structural alterations in the beta-adrenergic receptor accompany the desensitization process in turkey erythrocytes.  相似文献   

10.
Human SK-N-MC neurotumor cells express beta 1- but not beta 2-adrenergic receptors. Following exposure of the cells to isoproterenol, there was no reduction in the maximum response of adenylyl cyclase to the agonist but a 3-fold shift to less sensitivity in the concentration response. This desensitization was very rapid and dose dependent; half-maximal effects occurred at 10 nM isoproterenol. A similar shift was observed when membranes from control cells were incubated with ATP and the catalytic subunit of cyclic AMP-dependent protein kinase (PKA). No shift, however, was observed in intact cells exposed to either dibutyryl cyclic AMP or dopamine, which stimulates adenylyl cyclase in these cells through D1 dopamine receptors. To pursue the role of protein kinases in the desensitization process, cells were made permeable, loaded with a PKA inhibitor or with heparin, an inhibitor of the beta-adrenergic receptor kinase (beta ARK), and exposed to isoproterenol. The PKA inhibitor but not heparin blocked the agonist-mediated desensitization. In contrast, desensitized human tumor cells (HeLa and A431), which express beta 2-adrenergic receptors, exhibited both a shift in concentration response and a reduction in maximum response; the former was blocked by the PKA inhibitor and the latter by heparin. Our results indicated that whereas both human beta 1- and beta 2-adrenergic receptors are susceptible to PKA, only the beta 2 receptors are susceptible to beta ARK. These differences in desensitization may be due to differences in receptor structure as the human beta 1 receptor has fewer potential phosphorylation sites for beta ARK in the carboxyl terminus than the human beta 2 receptor.  相似文献   

11.
S49 mouse lymphoma cells contain a beta-adrenergic receptor coupled to Gs that stimulates adenylyl cyclase and a somatostatin receptor coupled to Gi that inhibits adenylyl cyclase. Membranes from these cells were used to compare the inhibitory effects of somatostatin and G protein beta gamma complex to determine under what conditions beta gamma is likely to be a mediator of somatostatin action. Somatostatin was equally effective at inhibiting basal adenylyl cyclase activity in the presence of GTP, forskolin-stimulated activity, and hormone-stimulated activity. G protein beta gamma was more effective at inhibiting basal activity than was somatostatin, and these effects were partially additive. In the presence of forskolin, the two inhibitors were equally effective and not additive. In the presence of isoproterenol, beta gamma was much less effective than somatostatin, and the two inhibitors did not have additive or synergistic effects. At very high concentrations beta gamma did inhibit isoproterenol stimulation of adenylyl cyclase, although its effects were not saturating even at 100 micrograms/ml. Under conditions where beta gamma did inhibit hormone stimulation, beta gamma was a mixed inhibitor of isoproterenol stimulation, proportionally decreasing the maximum effect of the hormone and increasing the half-maximally effective concentration. Somatostatin, on the other hand, was a simple noncompetitive inhibitor of isoproterenol stimulation. These results indicate that beta gamma and somatostatin inhibit adenylyl cyclase by different mechanisms, at least in the presence of hormones that stimulate the enzyme. It is proposed that alpha i is the primary mediator of hormone inhibition of adenylyl cyclase when Gs is activated by a hormone, but that beta gamma may have a role as a mediator of inhibition of basal activity.  相似文献   

12.
Ugur O  Onaran HO  Jones TL 《Biochemistry》2003,42(9):2607-2615
Most heterotrimeric G-protein alpha subunits are posttranslationally modified by palmitoylation, a reversible process that is dynamically regulated. We analyzed the effects of Galpha(s) palmitoylation for its intracellular distribution and ability to couple to the beta-adrenergic receptor (betaAR) and stimulate adenylyl cyclase. Subcellular fractionation and immunofluorescence microscopy of stably transfected cyc(-) cells, which lack endogenous Galpha(s), showed that wild-type Galpha(s) was predominantly localized at the plasma membrane, but the mutant C3A-Galpha(s), which does not incorporate [(3)H]palmitate, was mostly associated with intracellular membranes. In agreement with this mislocalization, C3A-Galpha(s) showed neither isoproterenol- or GTPgammaS-stimulated adenylyl cyclase activation nor GTPgammaS-sensitive high-affinity agonist binding, all of which were present in the wild-type Galpha(s) expressing cells. Fusion of C3A-Galpha(s) with the betaAR [betaAR-(C3A)Galpha(s)] partially rescued its ability to induce high-affinity agonist binding and to stimulate adenylyl cyclase activity after isoproterenol or GTPgammaS treatment. In comparison to results with the WT-Galpha(s) and betaAR (betaAR-Galpha(s)) fusion protein, the betaAR-(C3A)Galpha(s) fusion protein was about half as efficient at coupling to the receptor and effector. Chemical depalmitoylation by hydroxylamine of membranes expressing betaAR-Galpha(s) reduced the high-affinity agonist binding and adenylyl cyclase activation to a similar degree as that observed in betaAR-(C3A)Galpha(s) expressing membranes. Altogether, these findings indicate that palmitoylation ensured proper localization of Galpha(s) and facilitated bimolecular interactions of Galpha(s) with the betaAR and adenylyl cyclase.  相似文献   

13.
We investigated the roles of beta(1)- and beta(2)-receptors (beta-AR) in adrenergic enhancement of L-type Ca(2+) current (I(CaL)) in canine ventricular myocytes. Isoproterenol and l-norepinephrine produced a monophasic and a biphasic concentration-I(CaL) relationship (CR), respectively. alpha(1)-AR inhibition with prazosin and beta(2)-AR stimulation with zinterol or l-epinephrine shifted the CR of l-norepinephrine leftward. Zinterol (50 nM) and l-epinephrine (10 nM), but not prazosin, altered the biphasic CR of l-norepinephrine to a monophasic CR. Zinterol and l-epinephrine applied after l-norepinephrine had no effect on I(CaL). beta(2)-AR inhibition with ICI-118551 reduced the E(max) of isoproterenol and l-norepinephrine by 60% and abolished the augmentation of l-norepinephrine by zinterol and l-epinephrine. Carbachol (100 nM) modestly reduced the I(CaL) response to beta(1)-AR stimulation but abolished the enhancement via beta(2)-AR. Zinterol augmented the enhancement of I(CaL) by forskolin, IBMX, and theophylline, but not in the presence of CGP-20712A. We conclude that selective beta(2)-AR stimulation does not increase I(CaL) but enhances adenylyl cyclase activity when stimulated via beta(1)-AR and with forskolin. beta(2)-AR activity preconditions adenylyl cyclase for beta(1)-AR stimulation.  相似文献   

14.
Treatment of cultured Kupffer cells with the beta-adrenergic agonist isoproterenol (10 microM) for a short period of time (30 min) attenuated the subsequent platelet-activating factor (PAF)-induced arachidonic acid release and cyclooxygenase-derived eicosanoid (e.g. thromboxane B2 and prostaglandin E2) production. This effect of isoproterenol was highly specific since the alpha-adrenergic agonist phenylephrine and the beta-adrenergic antagonist propranolol had no effect on the stimulatory effect of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC). The inhibitory effect of isoproterenol on the AGEPC-induced arachidonic acid release was demonstrated through the use of a specific beta-adrenergic subtype agonist and antagonist to be mediated by beta 2-adrenergic receptors on Kupffer cells. These inhibitory effects of isoproterenol can be mimicked by dibutyryl cAMP but not by dibutyryl cGMP, suggesting that a cAMP-dependent mechanism is likely involved in the regulatory action of isoproterenol. Ligand binding studies indicated that short term (i.e. 30 min) treatment of the cultured Kupffer cells with either isoproterenol or dibutyryl cAMP had no effect on the specific [3H]PAF binding. However, long term incubation (9-24 h) with dibutyryl cAMP caused down-regulation of the PAF receptors in rat Kupffer cells. Forskolin (0.1 mM), an adenylyl cyclase activator, down-regulated the surface expression of the AGEPC receptors more rapidly, decreasing the specific [3H]AGEPC binding by approximately 40% within 2 h. The receptor regulatory effect of dibutyryl cAMP and forskolin was time- and concentration-dependent. These observations suggest that a cAMP-dependent mechanism coupled with beta 2-adrenergic receptors may have important regulatory effects on the PAF receptor and post-receptor signal transducing mechanisms for PAF in hepatic Kupffer cells.  相似文献   

15.
The PvuII fragment of human genomic clone LCV-517 which contains the entire coding region of a beta-adrenergic receptor gene was cloned into the SmaI site of the expression vector pMSG. The recombinant DNA was cotransfected with pRSVneo into mouse B-82 cells using the CaPO4 precipitation method. B-82 cells do not possess beta-adrenergic receptors but do contain prostaglandin E1 receptors that stimulate adenylate cyclase. Following transfection, several colonies expressing beta-adrenergic receptors were isolated. Analysis of ligand binding to expressed beta-receptors indicated that the protein encoded by the gene in clone LCV-517 was a beta 2-adrenergic subtype. Human beta 2-adrenergic receptors photoaffinity labeled with [125I]iodocyanopindolol diazirine migrated on sodium dodecyl sulfate-polyacrylamide gels consistent with a molecular mass of 68,000, demonstrating that the receptor is glycosylated to an extent of 25-30% by weight. Addition of isoproterenol to cultures of transfected cells resulted in a 3-4-fold stimulation of adenylate cyclase, an effect similar to that seen in control B-82 cells with prostaglandin E1. These data describe the production of stable murine clonal cell lines expressing human beta 2-adrenergic receptors and illustrate the utility of such lines in the biochemical and pharmacological characterization of receptor proteins.  相似文献   

16.
17.
The cellular localization of beta-adrenergic and prostaglandin (PG) receptors and their effects on adenylate cyclase activity (AC) and testosterone production in vitro were investigated in a transplantable rat Leydig cell tumor (H-540). Separation of the tumor cells in Percoll gradients revealed that the specific binding of [3H]PGE1 and [125I]Cyanopindolol was found in the same fraction as that of [125I]LH. This fraction--judged by light microscopy of smears--consisted of tumor Leydig cells. In addition, [125I]cyanopindolol was found specifically bound in the red blood cell fraction. In the Leydig tumor cells, approx 25% of the beta-adrenergic receptors was identified as beta 1-receptors, whereas approx 75% of the receptors were of the beta 2-subtype. The AC in Percoll purified Leydig tumor cells was stimulated by hCG (6-fold), PGE1 (2-fold), PGE2 (1.5-fold), PGI1 (2-fold) and isoproterenol (2-fold). The AC in the red blood cell fraction was stimulated by isoproterenol whereas the PGs and hCG had little or no effect. hCG, isoproterenol and PGE1 were able to stimulate testosterone production in vitro. At 44 h incubation, PGE1 was the most potent stimulator of testosterone production. In conclusion, tumor Leydig cells possess hCG, PGE1, PGI2 and beta-adrenergic receptors coupled to the AC. PGE1 and beta-adrenergic agonists stimulate testosterone production after prolonged incubation in vitro.  相似文献   

18.
beta 2-Adrenergic receptors expressed in Sf9 cells activate endogenous Gs and adenylyl cyclase [Mouillac B., Caron M., Bonin H., Dennis M. and Bouvier M. (1992) J. Biol. Chem. 267, 21733-21737]. However, high affinity agonist binding is not detectable under these conditions suggesting an improper stoichiometry between the receptor and the G protein and possibly the effector molecule as well. In this study we demonstrate that when beta 2-adrenergic receptors were co-expressed with various mammalian G protein subunits in Sf9 cells using recombinant baculoviruses signalling properties found in native receptor systems were reconstituted. For example, when beta 2AR was co-expressed with the Gs alpha subunit, maximal receptor-mediated adenylyl cyclase stimulation was greatly enhanced (60 +/- 9.0 versus 150 +/- 52 pmol cAMP/min/mg protein) and high affinity, GppNHp-sensitive, agonist binding was detected. When G beta gamma subunits were co-expressed with Gs alpha and the beta 2AR, receptor-stimulated GTPase activity was also demonstrated, in contrast to when the receptor was expressed alone, and this activity was higher than when beta 2AR was co-expressed with Gs alpha alone. Other properties of the receptor, including receptor desensitization and response to inverse agonists were unaltered. Using antisera against an epitope-tagged beta 2AR, both Gs alpha and beta gamma subunits could be co-immunoprecipitated with the beta 2AR under conditions where subunit dissociation would be expected given current models of G protein function. A desensitization-defective beta 2AR (S261, 262, 345, 346A) and a mutant which is constitutively desensitized (C341G) could also co-immunoprecipitate G protein subunits. These results will be discussed in terms of a revised view of G protein-mediated signalling which may help address issues of specificity in receptor/G protein coupling.  相似文献   

19.
Reconstitution of high-affinity agonist binding at the beta2-adrenoceptor (beta2AR) expressed in Sf9 insect cells requires a large excess of the stimulatory G-protein of adenylyl cyclase, Gsalpha, relative to receptor [R. Seifert, T. W. Lee, V. T. Lam & B. K. Kobilka, (1998) Eur. J. Biochem. 255, 369-382]. In a fusion protein of the beta2AR and Gsalpha (beta2AR-Gsalpha), which has only a 1 : 1 stoichiometry of receptor and G-protein, high-affinity agonist binding and agonist-stimulated GTP hydrolysis, guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) binding and adenylyl cyclase (AC) activation are more efficient than in the nonfused coexpression system. In order to analyze the stability of the receptor/G-protein interaction, we constructed a fusion protein with a thrombin-cleavage site between beta2AR and Gsalpha (beta2AR-TS-Gsalpha). beta2AR-TS-Gsalpha efficiently reconstituted high-affinity agonist binding, agonist-stimulated GTP hydrolysis, GTP[S] binding and AC activation. Thrombin cleaves approximately 70% of beta2AR-TS-Gsalpha molecules in Sf9 membranes. Thrombin cleavage did not impair high-affinity agonist binding and GTP[S] binding but strongly reduced ligand-regulated GTPase activity and AC activity. We conclude that fusion of the beta2AR to Gsalpha promotes tight physical association of the two partners and that this association remains stable for a single activation/deactivation cycle even after cleavage of the link between the receptor and G-protein. Dilution of Gsalpha in the membrane and release of activated Gsalpha into the cytosol can both prevent cleaved beta2AR-TS-Gsalpha from undergoing multiple activation/deactivation cycles.  相似文献   

20.
Exposure of beta 2-adrenergic receptors to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase, associated with an increased phosphorylation of the receptor. Agonist-promoted phosphorylation of the beta 2-adrenergic receptor (beta 2AR) by protein kinase A and the beta-adrenergic receptor kinase (beta ARK) is believed to promote a functional uncoupling of the receptor from the guanyl nucleotide regulatory protein Gs. More recently, palmitoylation of Cys341 of the receptor has also been proposed to play an important role in the coupling of the beta 2-adrenergic receptor to Gs. Here we report that substitution of the palmitoylated cysteine by a glycine (Gly341 beta 2 AR) using site directed mutagenesis leads to a receptor being highly phosphorylated and largely uncoupled from Gs. In Chinese hamster fibroblasts (CHW), stably transfected with the human receptor cDNAs, the basal phosphorylation level of Gly341 beta 2AR was found to be approximately 4 times that of the wild type receptor. This elevated phosphorylation level was accompanied by a depressed ability of the receptor to stimulate the adenylyl cyclase and to form a guanyl nucleotide-sensitive high affinity state for agonists. Moreover, exposure of this unpalmitoylated receptor to an agonist did not promote any further phosphorylation or uncoupling. A modest desensitization of the receptor-stimulated adenylyl cyclase response was observed but resulted from the agonist-induced sequestration of the unpalmitoylated receptor and could be blocked by concanavalin A. This contrasts with the agonist-promoted phosphorylation and uncoupling of the wild type receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号