首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hurshman AR  White JT  Powers ET  Kelly JW 《Biochemistry》2004,43(23):7365-7381
The deposition of fibrils and amorphous aggregates of transthyretin (TTR) in patient tissues is a hallmark of TTR amyloid disease, but the molecular details of amyloidogenesis are poorly understood. Tetramer dissociation is typically rate-limiting for TTR amyloid fibril formation, so we have used a monomeric variant of TTR (M-TTR) to study the mechanism of aggregation. Amyloid formation is often considered to be a nucleation-dependent process, where fibril growth requires the formation of an oligomeric nucleus that is the highest energy species on the pathway. According to this model, the rate of fibril formation should be accelerated by the addition of preformed aggregates or "seeds", which effectively bypasses the nucleation step. Herein, we demonstrate that M-TTR amyloidogenesis at low pH is a complex, multistep reaction whose kinetic behavior is incompatible with the expectations for a nucleation-dependent polymerization. M-TTR aggregation is not accelerated by seeding, and the dependence of the reaction timecourse is first-order on the M-TTR concentration, consistent either with a dimeric nucleus or with a nonnucleated process where each step is bimolecular and essentially irreversible. These studies suggest that amyloid formation by M-TTR under partially denaturing conditions is a downhill polymerization, in which the highest energy species is the native monomer. Our results emphasize the importance of therapeutic strategies that stabilize the TTR tetramer and may help to explain why more than eighty TTR variants are disease-associated. The differences between amyloid formation by M-TTR and other amyloidogenic peptides (such as amyloid beta-peptide and islet amyloid polypeptide) demonstrate that these polypeptides do not share a common aggregation mechanism, at least under the conditions examined thus far.  相似文献   

2.
Transthyretin (TTR) is a soluble human plasma protein that can be converted into amyloid by acid-mediated dissociation of the homotetramer into monomers. The pH required for disassembly also results in tertiary structural changes within the monomeric subunits. To understand whether these tertiary structural changes are required for amyloidogenicity, we created the Phe87Met/Leu110Met TTR variant (M-TTR) that is monomeric according to analytical ultracentrifugation and gel filtration analyses and nonamyloidogenic at neutral pH. Results from far- and near-UV circular dichroism spectroscopy, one-dimensional proton NMR spectroscopy, and X-ray crystallography, as well as the ability of M-TTR to form a complex with retinol binding protein, indicate that M-TTR forms a tertiary structure at pH 7 that is very similar if not identical to that found within the tetramer. Reducing the pH results in tertiary structural changes within the M-TTR monomer, rendering it amyloidogenic, demonstrating the requirement for partial denaturation. M-TTR exhibits stability toward acid and urea denaturation that is nearly identical to that characterizing wild-type (WT) TTR at low concentrations (0.01-0.1 mg/mL), where monomeric WT TTR is significantly populated at intermediate urea concentrations prior to the tertiary structural transition. However, the kinetics of denaturation and fibril formation are much faster for M-TTR than for tetrameric WT TTR, particularly at near-physiological concentrations, because of the barrier associated with the tetramer to folded monomer preequilibrium. These results demonstrate that the tetramer to folded monomer transition is insufficient for fibril formation; further tertiary structural changes within the monomer are required.  相似文献   

3.
Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant hereditary type of amyloidosis involving amino acid substitutions in transthyretin (TTR). V30M-TTR is the most frequent variant, and L55P-TTR is the variant associated with the most aggressive form of FAP. The thermal stability of the wild-type, V30M-TTR, L55P-TTR and a non-amyloidogenic variant, T119M-TTR, was studied by high-sensitivity differential scanning calorimetry (DSC). The thermal unfolding of TTR is a spontaneous reversible process involving a highly co-operative transition between folded tetramers and unfolded monomers. All variants of transthyretin are very stable to the thermal unfolding that occurs at very high temperatures, most probably because of their oligomeric structure. The data presented in this work indicated that for the homotetrameric form of the wild-type TTR and its variants, the order of stability is as follows: wild-type TTR approximately > T119M-TTR > L55P-TTR > V30M-TTR, which does not correlate with their known amyloidogenic potential.  相似文献   

4.
Although human transthyretin (TTR) is associated with systemic amyloidoses, an anti-amyloidogenic effect that prevents Aβ fibril formation in vitro and in animal models has been observed. Here we studied the ability of three different types of TTR, namely human tetramers (hTTR), mouse tetramers (muTTR) and an engineered monomer of the human protein (M-TTR), to suppress the toxicity of oligomers formed by two different amyloidogenic peptides/proteins (HypF-N and Aβ42). muTTR is the most stable homotetramer, hTTR can dissociate into partially unfolded monomers, whereas M-TTR maintains a monomeric state. Preformed toxic HypF-N and Aβ42 oligomers were incubated in the presence of each TTR then added to cell culture media. hTTR, and to a greater extent M-TTR, were found to protect human neuroblastoma cells and rat primary neurons against oligomer-induced toxicity, whereas muTTR had no protective effect. The thioflavin T assay and site-directed labeling experiments using pyrene ruled out disaggregation and structural reorganization within the discrete oligomers following incubation with TTRs, while confocal microscopy, SDS-PAGE, and intrinsic fluorescence measurements indicated tight binding between oligomers and hTTR, particularly M-TTR. Moreover, atomic force microscopy (AFM), light scattering and turbidimetry analyses indicated that larger assemblies of oligomers are formed in the presence of M-TTR and, to a lesser extent, with hTTR. Overall, the data suggest a generic capacity of TTR to efficiently neutralize the toxicity of oligomers formed by misfolded proteins and reveal that such neutralization occurs through a mechanism of TTR-mediated assembly of protein oligomers into larger species, with an efficiency that correlates inversely with TTR tetramer stability.  相似文献   

5.
In amyloidosis, normally innocuous soluble proteins polymerize to form insoluble fibrils. Amyloid fibril formation and deposition have been associated with a wide range of diseases, including spongiform encephalopathies, Alzheimer's disease, and familial amyloid polyneuropathies (FAP). In certain forms of FAP, the amyloid fibrils are mostly constituted by variants of transthyretin (TTR), a homotetrameric plasma protein implicated in the transport of thyroxine and retinol. The most common amyloidogenic TTR variant is V30M-TTR, and L55P-TTR is the variant associated with the most aggressive form of FAP. Recently, we reported that TTR dissociates to a monomeric species at pH 7.0 and nearly physiological ionic strengths (Quintas, A., Saraiva, M. J., and Brito, R. M. (1997) FEBS Lett. 418, 297-300). Here, we show that the tetramer dissociation is apparently irreversible; and based on intrinsic tryptophan fluorescence and fluorescence quenching experiments, we show that the monomeric species formed upon tetramer dissociation is non-native. We also show, based on 1-anilino-8-naph-thalenesulfonate binding studies, that this monomeric species appears not to behave like a molten globule. These data allowed us to propose a model for TTR amyloidogenesis based on tetramer dissociation occurring naturally under commonly observed physiological solution conditions.  相似文献   

6.
Transthyretin (TTR) is a tetrameric β-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TRβ-selective agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR.  相似文献   

7.
Transthyretin (TTR) is a human disease-associated amyloidogenic protein that has been implicated in senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). FAP typically results in severe and early-onset disease, and the only therapy established so far is liver transplantation; thus, developing new strategies for treating FAP is of paramount interest. Clusterin has recently been proposed to play a role as an extracellular molecular chaperone, affecting the fibril formation of amyloidogenic proteins. The ability of clusterin to influence amyloid fibril formation prompted us to investigate whether clusterin is capable of inhibiting TTR amyloidosis. Here, we report that clusterin strongly interacts with wild-type TTR and TTR variants V30M and L55P under acidic conditions, and blocks the amyloid fibril formation of TTR variants. In particular, the amyloid fibril formation of V30M TTR in the presence of clusterin is reduced to level similar to wild-type TTR. We also demonstrated that clusterin is an effective inhibitor of L55P TTR amyloidosis, the most aggressive form of TTR diseases. The mechanism by which clusterin inhibits TTR amyloidosis appears to be through stabilization of TTR tetrameric structure. These findings suggest the possibility of using clusterin as a therapeutic agent for TTR amyloidosis.  相似文献   

8.

Background

Transthyretin (TTR) is a homotetrameric serum and cerebrospinal fluid protein that transports thyroxine (T4) and retinol by binding to retinol binding protein. Rate-limiting tetramer dissociation and rapid monomer misfolding and disassembly of TTR lead to amyloid fibril formation in different tissues causing various amyloid diseases. Based on the current understanding of the pathogenesis of TTR amyloidosis, it is considered that the inhibition of amyloid fibril formation by stabilization of TTR in native tetrameric form is a viable approach for the treatment of TTR amyloidosis.

Methodology and Principal Findings

We have examined interactions of the wtTTR with a series of compounds containing various substitutions at biphenyl ether skeleton and a novel compound, previously evaluated for binding and inhibiting tetramer dissociation, by x-ray crystallographic approach. High resolution crystal structures of five ligands in complex with wtTTR provided snapshots of negatively cooperative binding of ligands in two T4 binding sites besides characterizing their binding orientations, conformations, and interactions with binding site residues. In all complexes, the ligand has better fit and more potent interactions in first T4 site i.e. (AC site) than the second T4 site (BD site). Together, these results suggest that AC site is a preferred ligand binding site and retention of ordered water molecules between the dimer interfaces further stabilizes the tetramer by bridging a hydrogen bond interaction between Ser117 and its symmetric copy.

Conclusion

Novel biphenyl ether based compounds exhibit negative-cooperativity while binding to two T4 sites which suggests that binding of only single ligand molecule is sufficient to inhibit the TTR tetramer dissociation.  相似文献   

9.
Recently, a new nonpathogenic transthyretin (TTR) variant-TTR R104H (TTR H104)-has been described in heterozygotic and compound heterozygotic individuals from a Japanese family with familial amyloidotic polyneuropathy (FAP). The compound heterozygotic individual, a carrier of TTR V30M (TTR M30) and TTR R104H (TTR M30/H104) presented a very mild form of FAP with slow progression of the disease. TTR and retinol binding protein (RBP) levels were found to be increased in serum from TTR H104 carriers. These characteristics are very similar to those found in compound heterozygotic carriers of TTR V30M-T119M (TTR M30/M119). To structurally compare these variants, we performed stability and thyroxine (T(4)) binding studies. TTR M30/H104 showed an increased resistance to dissociation into monomers similar to TTR M30/M119. This suggests that the His104 substitution has the same stabilizing effect on tetrameric TTR as the Met119 substitution. Concerning T(4) binding, TTR H104 presents a T(4) binding affinity lower than that of TTR M119, but still higher than normal TTR. However, TTR from the compound heterozygotic carrier of TTR M30/H104 presented a T(4) binding affinity lower than normal. The results indicate that the His 104 substitution induces structural alterations that increase the stability of the tetramer in compound heterozygotes for TTR M30 despite a lower affinity for T(4) binding. Thus, stability of TTR and binding affinity for T(4) may not be related. More detailed characterization of these variants is needed to clarify the structural alterations responsible for their increased stability.  相似文献   

10.
Hou X  Richardson SJ  Aguilar MI  Small DH 《Biochemistry》2005,44(34):11618-11627
Transthyretin (TTR) can deposit as amyloid in the peripheral nervous system and induce a peripheral neuropathy. We examined the mechanism of TTR amyloid neurotoxicity on SH-SY5Y neuroblastoma cells. Wild-type (WT) TTR and two amyloidogenic mutants (V30M and L55P) were expressed in Escherichia coli. Incubation (aging) of WT TTR at 37 degrees C for 1 week caused no significant aggregation. However, there was a significant increase in the extent of amyloid fibril formation after the amyloidogenic mutants had been aged. L55P TTR aggregated more readily than V30M TTR. Both amyloidogenic mutants were neurotoxic after aging. The order of neurotoxicity was as follows: L55P > V30M > WT. As binding of amyloid proteins to the plasma membrane may cause cytotoxicity, we studied the binding of TTR to a plasma membrane-enriched preparation from SH-SY5Y cells by surface plasmon resonance. All three forms bound to the plasma membrane through electrostatic interactions. The binding of the amyloidogenic mutants was increased by aging. The amount of binding correlated closely with the amount of aggregation and with the cytotoxicity of each form. As membrane fluidity can influence cell viability, we also examined the effect of TTR on membrane fluidity using a fluorescence anisotropy method. Binding of the amyloidogenic TTR mutants increased membrane fluidity, and once again, the order of potency was as follows: L55P > V30M > WT. These results demonstrate that TTR can bind to the plasma membrane and cause a change in membrane fluidity. Altered membrane fluidity may be the cause of the neurotoxicity.  相似文献   

11.
The role of amino acid side chain oxidation in the formation of amyloid assemblies has been investigated. Chemical oxidation of amino acid side chains has been used as a facile method of introducing mutations on protein structures. Oxidation promotes changes within tertiary contacts that enable identification of residues and interactions critical in stabilizing protein structures. Transthyretin (TTR) is a soluble human plasma protein. The wild-type (WT) and several of its variants are prone to fibril formation, which leads to amyloidosis associated with many clinical syndromes. The effects of amino acid side chain oxidations were investigated by comparing the kinetics of fibril formation of oxidized and unoxidized proteins. The WT and V30M TTR mutant (valine 30 substituted with methionine) were allowed to react over a time range of 10 min to 12 h with hydroxy radical and other reactive oxygen species. In these timescales, up to five oxygen atoms were incorporated into WT and V30M TTR proteins. Oxidized proteins retained their tetrameric structures, as determined by cross-linking experiments. Side chain modification of methionine residues at position 13 and 30 (the latter for V30M TTR only) were dominant oxidative products. Mono-oxidized and dioxidized methionine residues were identified by radical probe mass spectometry employing a footprinting type approach. Oxidation inhibited the initial rates and extent of fibril formation for both the WT and V30M TTR proteins. In the case of WT TTR, oxidation inhibited fibril growth by approximately 76%, and for the V30M TTR by nearly 90%. These inhibiting effects of oxidation on fibril growth suggest that domains neighboring the methionine residues are critical in stabilizing the tetrameric and folded monomer structures.  相似文献   

12.
A light scattering-based amyloid fibril formation assay was employed to evaluate potential inhibitors of transthyretin (TTR) amyloid fibril formation in vitro. Twenty nine aromatic small molecules, some with homology to flufenamic acid (a known non-steroidal anti-inflammatory drug) were tested to identify important structural features for inhibitor efficacy. The results of these experiments and earlier data suggest that likely inhibitors will have aromatic-based structures with at least two aromatic rings. The ring or fused ring system occupying the outermost TTR binding pocket needs to be substituted with an acidic functional group (e.g. a carboxylic acid) to interact with complimentary charges in the TTR binding site. The promising TTR amyloid fibril inhibitors ranked in order of efficacy are: 2 > 4 approximately 7 > 3 > 9 > 6 > 21.  相似文献   

13.
Transthyretin (TTR) protects against A-Beta toxicity by binding the peptide thus inhibiting its aggregation. Previous work showed different TTR mutations interact differently with A-Beta, with increasing affinities correlating with decreasing amyloidogenecity of the TTR mutant; this did not impact on the levels of inhibition of A-Beta aggregation, as assessed by transmission electron microscopy. Our work aimed at probing differences in binding to A-Beta by WT, T119M and L55P TTR using quantitative assays, and at identifying factors affecting this interaction. We addressed the impact of such factors in TTR ability to degrade A-Beta. Using a dot blot approach with the anti-oligomeric antibody A11, we showed that A-Beta formed oligomers transiently, indicating aggregation and fibril formation, whereas in the presence of WT and T119M TTR the oligomers persisted longer, indicative that these variants avoided further aggregation into fibrils. In contrast, L55PTTR was not able to inhibit oligomerization or to prevent evolution to aggregates and fibrils. Furthermore, apoptosis assessment showed WT and T119M TTR were able to protect against A-Beta toxicity. Because the amyloidogenic potential of TTR is inversely correlated with its stability, the use of drugs able to stabilize TTR tetrameric fold could result in increased TTR/A-Beta binding. Here we showed that iododiflunisal, 3-dinitrophenol, resveratrol, [2-(3,5-dichlorophenyl)amino] (DCPA) and [4-(3,5-difluorophenyl)] (DFPB) were able to increase TTR binding to A-Beta; however only DCPA and DFPB improved TTR proteolytic activity. Thyroxine, a TTR ligand, did not influence TTR/A-Beta interaction and A-Beta degradation by TTR, whereas RBP, another TTR ligand, not only obstructed the interaction but also inhibited TTR proteolytic activity. Our results showed differences between WT and T119M TTR, and L55PTTR mutant regarding their interaction with A-Beta and prompt the stability of TTR as a key factor in this interaction, which may be relevant in AD pathogenesis and for the design of therapeutic TTR-based therapies.  相似文献   

14.
Transthyretin (TTR) is a 54?kDa homotetrameric protein that transports thyroxine (T4) and retinol (vitamin A), through its association with retinol binding protein (RBP). Under unknown conditions, it aggregates to form fibrils associated with TTR amyloidosis. Ligands able to inhibit fibril formation have been studied by X-ray crystallography. The use of polyethylene glycol (PEG) instead of ammonium sulphate or citrate has been evaluated as an alternative to obtain new TTR complexes with (R)-3-(9-fluoren-9-ylideneaminooxy)-2-methyl-N-(methylsulfonyl) propionamide (48R(1)) and 2-(9H-fluoren-9-ylideneaminooxy) acetic acid (ES8(2)). The previously described fluorenyl based inhibitors (S)-3-((9H-fluoren-9-ylideneamino)oxy)-2-methylpropanoic acid (6BD) and 3-((9H-fluoren-9-ylideneamino)oxy)propanoic acid (7BD) have been re-evaluated with the changed crystallization method. The new TTR complexes with compounds of the same family show that the 9-fluorenyl motif can occupy alternative hydrophobic binding sites. This augments the potential use of this scaffold to yield a large variety of differently substituted mono-aryl compounds able to inhibit TTR fibril formation.  相似文献   

15.
Biophysical evidences suggest that transthyretin (TTR) tetramer dissociation to the monomeric intermediate and subsequent polymerization leads to amyloid fibril formation, which is implicated in the pathogenesis of familial amyloid polyneuropathy (FAP) and senile systemic amyloidosis (SSA). Hence, inhibition of fibril formation is considered a potential therapeutic strategy. Here in we demonstrate that curcumin, a phenolic constituent of curry spice turmeric, binds to the active site of TTR through fluorescence quenching and ANS displacement studies. Binding of curcumin appears to inhibit the denaturant induced tertiary and quaternary structural changes in TTR as monitored by intrinsic emission fluorescence and glutaraldehyde cross-linking studies. However, curcumin did not bind to TTR at acidic pH. Protonation/ isomerization of the side chain oxygen atoms of curcumin at low pH might hamper the binding. These results suggest that curcumin binds to and stabilizes TTR thereby highlight the importance of the side chain conformations of the ligand in binding to TTR.  相似文献   

16.
Destabilization of the tetrameric fold of TTR (transthyretin) is important for aggregation of the protein which culminates in amyloid fibril formation. Many TTR mutations interfere with tetramer stability, increasing the amyloidogenic potential of the protein. The vast majority of proposed TTR fibrillogenesis inhibitors are based on in vitro assays with isolated protein, limiting their future use in clinical assays. In the present study we investigated TTR fibrillogenesis inhibitors using a cellular system that produces TTR intermediates/aggregates in the medium. Plasmids carrying wild-type TTR, V30M or L55P cDNA were transfected into a rat Schwannoma cell line and TTR aggregates were investigated in the medium using a dot-blot filter assay followed by immunodetection. Results showed that, in 24 h, TTR L55P forms aggregates in the medium, whereas, up to 72 h, wild-type TTR and V30M do not. A series of 12 different compounds, described in the literature as in vitro TTR fibrillogenesis inhibitors, were tested for their ability to inhibit L55P aggregate formation; in this system, 2-[(3,5-dichlorophenyl) amino] benzoic acid, benzoxazole, 4-(3,5-difluorophenyl) benzoic acid and tri-iodophenol were the most effective inhibitors, as compared with the reference iododiflunisal, previously shown by ex vivo and in vitro procedures to stabilize TTR and inhibit fibrillogenesis. Among these drugs, 2-[(3,5-dichlorophenyl) amino] benzoic acid and tri-iodophenol stabilized TTR from heterozygotic carriers of V30M in the same ex vivo conditions as those used previously for iododiflunisal. The novel cellular-based test herein proposed for TTR fibrillogenesis inhibitor screens avoids not only lengthy and cumbersome large-scale protein isolation steps but also artefacts associated with most current in vitro first-line screening methods, such as those associated with acidic conditions and the absence of serum proteins.  相似文献   

17.
TTR (transthyretin) amyloidoses are diseases characterized by the aggregation and extracellular deposition of the normally soluble plasma protein TTR. Ex vivo and tissue culture studies suggest that tissue damage precedes TTR fibril deposition, indicating that early events in the amyloidogenic cascade have an impact on disease development. We used a human cardiomyocyte tissue culture model system to define these events. We previously described that the amyloidogenic V122I TTR variant is cytotoxic to human cardiac cells, whereas the naturally occurring, stable and non-amyloidogenic T119M TTR variant is not. We show that most of the V122I TTR interacting with the cells is extracellular and this interaction is mediated by a membrane protein(s). In contrast, most of the non-amyloidogenic T119M TTR associated with the cells is intracellular where it undergoes lysosomal degradation. The TTR internalization process is highly dependent on membrane cholesterol content. Using a fluorescent labelled V122I TTR variant that has the same aggregation and cytotoxic potential as the native V122I TTR, we determined that its association with human cardiomyocytes is saturable with a KD near 650 nM. Only amyloidogenic V122I TTR compete with fluorescent V122I for cell-binding sites. Finally, incubation of the human cardiomyocytes with V122I TTR but not with T119M TTR, generates superoxide species and activates caspase 3/7. In summary, our results show that the interaction of the amyloidogenic V122I TTR is distinct from that of a non-amyloidogenic TTR variant and is characterized by its retention at the cell membrane, where it initiates the cytotoxic cascade.  相似文献   

18.
We have investigated the structure of in vivo formed transthyretin (TTR) amyloid deposits by using antisera raised against short linear sequences of the TTR molecule. In immunohistochemistry, antisera anti-TTR41-50 and anti-TTR115-124-a reacted specifically with both wildtype ATTR and ATTR V30M material, whereas only anti-TTR41-50 recognized ATTR Y114C material. Similar results were obtained by ELISA analysis of ATTR V30M and ATTR Y114C vitreous amyloid, where the anti-TTR115-124-a antiserum failed to react with ATTR Y114C material. Moreover, neither of the antisera recognized natively structured TTR present in pancreatic alpha cells. Our results strongly indicate that the TTR molecule undergoes structural changes during fibrillogenesis in vivo. The finding of a structural difference between wildtype ATTR and ATTR V30M material on one hand and ATTR Y114C material on the other suggests that the fibril formation pathway of these ATTR variants may differ in vivo.  相似文献   

19.
Transthyretin (TTR), a homotetrameric thyroxine transport protein found in the plasma and cerebrospinal fluid, circulates normally as a innocuous soluble protein. In some individuals, TTR polymerizes to form insoluble amyloid fibrils. TTR amyloid fibril formation and deposition have been associated with several diseases like familial amyloid polyneuropathy and senile systemic amyloidosis. Inhibition of the fibril formation is considered a potential strategy for the therapeutic intervention. The effect of small water-soluble, hydrophobic ligand 2,4-dinitrophenol (2,4-DNP) on TTR amyloid formation has been tested. 2,4-DNP binds to TTR both at acidic and physiological pH, as shown by the quenching of TTR intrinsic fluorescence. Interestingly, 2,4-DNP not only binds to TTR at acidic pH but also inhibits amyloid fibril formation as shown by the light scattering and Congo red-binding assay. Inhibition of fibril formation by 2,4-DNP appears to be through the stabilization of TTR tetramer upon binding to the protein, which includes active site. These findings may have implications for the development of mechanism based small molecular weight compounds as therapeutic agents for the prevention/inhibition of the amyloid diseases.  相似文献   

20.
Abnormally high concentrations of Zn(2+), Cu(2+), and Fe(3+) are present along with amyloid-β (Aβ) in the senile plaques in Alzheimer disease, where Al(3+) is also detected. Aβ aggregation is the key pathogenic event in Alzheimer disease, where Aβ oligomers are the major culprits. The fundamental mechanism of these metal ions on Aβ remains elusive. Here, we employ 4,4'-Bis(1-anilinonaphthalene 8-sulfonate) and tyrosine fluorescence, CD, stopped flow fluorescence, guanidine hydrochloride denaturation, and photo-induced cross-linking to elucidate the effect of Zn(2+), Cu(2+), Fe(3+), and Al(3+) on Aβ at the early stage of the aggregation. Furthermore, thioflavin T assay, dot blotting, and transmission electron microscopy are utilized to examine Aβ aggregation. Our results show that Al(3+) and Zn(2+), but not Cu(2+) and Fe(3+), induce larger hydrophobic exposures of Aβ conformation, resulting in its significant destabilization at the early stage. The metal ion binding induces Aβ conformational changes with micromolar binding affinities and millisecond binding kinetics. Cu(2+) and Zn(2+) induce similar assembly of transiently appearing Aβ oligomers at the early state. During the aggregation, we found that Zn(2+) exclusively promotes the annular protofibril formation without undergoing a nucleation process, whereas Cu(2+) and Fe(3+) inhibit fibril formation by prolonging the nucleation phases. Al(3+) also inhibits fibril formation; however, the annular oligomers co-exist in the aggregation pathway. In conclusion, Zn(2+), Cu(2+), Fe(3+), and Al(3+) adopt distinct folding and aggregation mechanisms to affect Aβ, where Aβ destabilization promotes annular protofibril formation. Our study facilitates the understanding of annular Aβ oligomer formation upon metal ion binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号