首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins, such as epithiospecifier proteins (ESPs). ESPs (non-catalytic cofactors of myrosinase) promote the formation of epithionitriles from terminal alkenyl glucosinolates and as recent evidence suggests, simple nitriles at the expense of isothiocyanates. The ratio of ESP activity to myrosinase activity is crucial in determining the proportion of these nitriles produced on hydrolysis. Sulphoraphane, a major isothiocyanate produced in broccoli seedlings, has been found to be a potent inducer of phase 2 detoxification enzymes. However, ESP may also support the formation of the non-inductive sulphoraphane nitrile. Our objective was to monitor changes in ESP activity during the development of broccoli seedlings and link these activity changes with myrosinase activity, the level of terminal alkenyl glucosinolates and sulphoraphane nitrile formed. Here, for the first time, we show ESP activity increases up to day 2 after germination before decreasing again to seed activity levels at day 5. These activity changes paralleled changes in myrosinase activity and terminal alkenyl glucosinolate content. There is a significant relationship between ESP activity and the formation of sulforaphane nitrile in broccoli seedlings. The significance of these findings for the health benefits conferred by eating broccoli seedlings is briefly discussed.  相似文献   

2.
Glucoraphanin from broccoli and its sprouts and seeds is a water soluble and relatively inert precursor of sulforaphane, the reactive isothiocyanate that potently inhibits neoplastic cellular processes and prevents a number of disease states. Sulforaphane is difficult to deliver in an enriched and stable form for purposes of direct human consumption. We have focused upon evaluating the bioavailability of sulforaphane, either by direct administration of glucoraphanin (a glucosinolate, or β-thioglucoside-N-hydroxysulfate), or by co-administering glucoraphanin and the enzyme myrosinase to catalyze its conversion to sulforaphane at economic, reproducible and sustainable yields. We show that following administration of glucoraphanin in a commercially prepared dietary supplement to a small number of human volunteers, the volunteers had equivalent output of sulforaphane metabolites in their urine to that which they produced when given an equimolar dose of glucoraphanin in a simple boiled and lyophilized extract of broccoli sprouts. Furthermore, when either broccoli sprouts or seeds are administered directly to subjects without prior extraction and consequent inactivation of endogenous myrosinase, regardless of the delivery matrix or dose, the sulforaphane in those preparations is 3- to 4-fold more bioavailable than sulforaphane from glucoraphanin delivered without active plant myrosinase. These data expand upon earlier reports of inter- and intra-individual variability, when glucoraphanin was delivered in either teas, juices, or gelatin capsules, and they confirm that a variety of delivery matrices may be equally suitable for glucoraphanin supplementation (e.g. fruit juices, water, or various types of capsules and tablets).  相似文献   

3.
4.
Effects of six metal ions on the formation of sulforaphane and the liberation of glucose upon hydrolysis of glucoraphanin by myrosinase at neutral pH were studied. The yields of sulforaphane and glucose were determined by HPLC. Copper ion and magnesium ion decreased the yields of sulforaphane and glucose. Ferrous ion and ferric ion inhibited the formation of sulforaphane, but had no effects on the liberation of glucose. Calcium ion increased the yield of glucose liberation, but inhibited the formation of sulforaphane. Only zinc ion was beneficial to the liberation of glucose and accelerated the formation of sulforaphane at initial reaction intervals.  相似文献   

5.
Epidemiological and animal studies linking high fruit and vegetable consumption to lower cancer risk have strengthened the belief that long-term administration of isolated naturally occurring dietary constituents could reduce the risk of cancer. In recent years, metabolites derived from phytoalexins, such as glucoraphanin found in broccoli and other cruciferous vegetables (Brassicaceae), have gained much attention as potential cancer chemopreventive agents. The protective effect of these micronutrients is assumed to be due to the inhibition of Phase-I carcinogen-bioactivating enzymes and/or induction of Phase-II detoxifying enzymes, an assumption that still remains uncertain. The protective effect of glucoraphanin is thought to be due to sulforaphane, an isothiocyanate metabolite produced from glucoraphanin by myrosinase. Here we show, in rat liver, that while glucoraphanin slightly induces Phase-II enzymes, it powerfully boosts Phase-I enzymes, including activators of polycyclic aromatic hydrocarbons (PAHs), nitrosamines and olefins. Induction of the cytochrome P450 (CYP) isoforms CYP1A1/2, CYP3A1/2 and CYP2E1 was confirmed by Western immunoblotting. CYP induction was paralleled by an increase in the corresponding mRNA levels. Concomitant with this Phase-I induction, we also found that glucoraphanin generated large amount of various reactive radical species, as determined by electron paramagnetic resonance (EPR) spectrometry coupled to a radical-probe technique. This suggests that long-term uncontrolled administration of glucoraphanin could actually pose a potential health hazard.  相似文献   

6.
Epidemiological studies suggest that broccoli can decrease risk for cancer. Broccoli contains many bioactives, including vitamins C and E, quercetin and kaempferol glycosides and, like other members of the Brassicaceae, several glucosinolates, including glucobrassicin (3-indolylmethyl glucosinolate) and glucoraphanin (4-methylsulphinylbutyl glucosinolate). A key bioactive component responsible for much of this activity may be sulforaphane (1-isothiocyanato-4-methylsulfinylbutane), a hydrolysis product of glucoraphanin. Sulforaphane not only upregulates a number of phase II detoxification enzymes involved in clearance of chemical carcinogens and reactive oxygen species, but has anti-tumorigenic properties, causing cell cycle arrest and apoptosis of cancer cells. The bioequivalency of sulforaphane and whole broccoli have not been fully evaluated, leaving it unclear whether whole broccoli provides a similar effect to purified sulforaphane, or whether the presence of other components in broccoli, such as indole-3-carbinol from glucobrassicin, is an added health benefit. Dietary indole-3-carbinol is known to alter estrogen metabolism, to cause cell cycle arrest and apoptosis of cancer cells and, in animals, to decrease risk for breast cancer. Recent research suggests that both dietary broccoli and the individual components sulforaphane and indole-3-carbinol may offer protection from a far broader array of diseases than cancer, including cardiovascular and neurodegenerative diseases. A common link between these oxidative degenerative diseases and cancer may be aggravation by inflammation. A small body of literature is forming suggesting that both indole-3-carbinol and sulforaphane may protect against inflammation, inhibiting cytokine production. It remains to be seen whether cancer, cardiovascular disease, dementia and other diseases of aging can all benefit from a diet rich in broccoli and other crucifers.  相似文献   

7.
Various analytical methods have been established to quantify isothiocyanates (ITCs) that derive from glucosinolate hydrolysis. However, to date there is no valid method applicable to pharmacokinetic studies that detects both glucosinolates and ITCs. A specific derivatization procedure was developed for the determination of ITCs based on the formation of a stable N-(tert-butoxycarbonyl)-l-cysteine methyl ester derivative, which can be measured by high-performance liquid chromatography with ultraviolet detection after extraction with ethylacetate. The novel method, which is also applicable to the indirect determination of glucosinolates after their hydrolysis by myrosinase, was established for the simultaneous determination of glucoraphanin and sulforaphane. By derivatization, the sensitivity of ITC detection was increased 2.5-fold. Analytical recoveries from urine and plasma were greater than 75% and from feces were approximately 50%. The method showed intra- and interday variations of less than 11 and 13%, respectively. Applicability of the method was demonstrated in mice that received various doses of glucoraphanin or that were fed a glucoraphanin-rich diet. Besides glucoraphanin and sulforaphane, glucoerucin and erucin were detected in urine and feces of mice. The novel method provides an essential tool for the analysis of bioactive glucosinolates and their hydrolysis products and, thus, will contribute to the elucidation of their bioavailability.  相似文献   

8.
The development of hybrid broccoli genotypes with enhanced levels of 4-methylsulphinylbutyl glucosinolate, the precursor of anticarcinogenic isothiocyanate sulforaphane (SF), by introgressing genomic segments from the wild ancestor Brassica villosa is described. We demonstrate that to obtain enhanced levels of either 3-methylsulphinylpropyl or 4-methylsulphinylbutyl glucosinolate it is necessary to have B. villosa alleles in either a homozygous or heterozygous state at a single quantitative trait locus (QTL) on O2. The ratio of these two glucosinolates, and thus whether iberin or SF is generated upon hydrolysis, is determined by the presence or absence of B. villosa alleles at this QTL, but also at an additional QTL2 on O5. We further demonstrate that following mild cooking high glucosinolate broccoli lines generate about three fold higher levels of SF than conventional varieties. Commercial freezing processes and storage of high glucosinolate broccoli maintains the high level of glucosinolates compared to standard cultivars, although the blanching process denatures the endogenous myrosinase activity.  相似文献   

9.
The defensive function of the glucosinolate-myrosinase system in plants of the order Capparales results from the formation of isothiocyanates when glucosinolates are hydrolysed by myrosinases upon tissue damage. In some glucosinolate-containing plant species, as well as in the insect herbivore Pieris rapae, protein factors alter the outcome of myrosinase-catalysed glucosinolate hydrolysis, leading to the formation of products other than isothiocyanates. To date, two such proteins have been identified at the molecular level, the epithiospecifier protein (ESP) from Arabidopsis thaliana and the nitrile-specifier protein (NSP) from P. rapae. These proteins share no sequence similarity although they both promote the formation of nitriles. To understand the biochemical bases of nitrile formation, we compared some of the properties of these proteins using purified preparations. We show that both proteins appear to be true enzymes rather than allosteric cofactors of myrosinases, based on their substrate and product specificities and the fact that the proportion of glucosinolates hydrolysed to nitriles does not remain constant when myrosinase activity varies. No stable association between ESP and myrosinase could be demonstrated during affinity chromatography, nevertheless some proximity of ESP to myrosinase is required for epithionitrile formation to occur, as evidenced by the lack of ESP activity when it was spatially separated from myrosinase in a dialysis chamber. The significant difference in substrate- and product specificities between A. thaliana ESP and P. rapae NSP is consonant with their different ecological functions. Furthermore, ESP and NSP differ remarkably in their requirements for metal ion cofactors. We found no indications of the involvement of a free radical mechanism in epithionitrile formation by ESP as suggested in earlier reports.  相似文献   

10.
11.
Epithiospecifier protein (ESP) is a protein that catalyses formation of epithionitriles during glucosinolate hydrolysis. In vitro assays with a recombinant ESP showed that the formation of epithionitriles from alkenylglucosinolates is ESP and ferrous ion dependent. Nitrile formation in vitro however does not require ESP but only the presence of Fe(II) and myrosinase. Ectopic expression of ESP in Arabidopsis thaliana Col-5 under control of the strong viral CaMV 35S promoter altered the glucosinolate product profile from isothiocyanates towards the corresponding nitriles.  相似文献   

12.
Bioactive compounds were produced from natural glucosinolates, secondary plant metabolites, using myrosinase (thioglucoside glucohydrolase EC 3.2.3.1) isolated from ripe seeds of Sinapis alba. The enzyme was immobilized on granular nylon 6.6 with the crosslinking technique. Immobilized myrosinase displayed extraordinary operational and storage stability. Using a small thermostatted continuous packed-bed bioreactor, the enzyme activity was unchanged after 15 days of continuous use at 37 degrees C and after >1 year of storage at room temperature. The bioreactor was particularly efficient in producing pure isothiocyanates, but it was less efficient for pure nitrile production.  相似文献   

13.
Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is an isothiocyanate found in some cruciferous vegetables, especially broccoli. Sulforaphane has been shown to display anti-cancer properties against various cancer cell lines. Matrix metalloproteinase-9 (MMP-9), which degrades the extracellular matrix (ECM), plays an important role in cancer cell invasion. In this study, we investigated the effect of sulforaphane on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 expression and cell invasion in MCF-7 cells. TPA-induced MMP-9 expression and cell invasion were decreased by sulforaphane treatment. TPA substantially increased NF-κB and AP-1 DNA binding activity. Pre-treatment with sulforaphane inhibited TPA-stimulated NF-κB binding activity, but not AP-1 binding activity. In addition, we found that sulforaphane suppressed NF-κB activation, by inhibiting phosphorylation of IκB in TPA-treated MCF-7 cells. In this study, we demonstrated that the inhibition of TPA-induced MMP-9 expression and cell invasion by sulforaphane was mediated by the suppression of the NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4): 201-206]  相似文献   

14.
Changes in isoperoxidases involved in chlorophyll (Chl) degradation of stored broccoli (Brassica oleracea L.) florets and their control by heat treatment (HT) were determined. Chl a and b contents in non-heat-treated broccoli florets decreased greatly after 2 days at 15 degrees C, whereas the contents in heat-treated florets (50 degrees C for 2 h) showed almost no change. Three isoperoxidases involved in Chl degradation were detected by means of molecular exclusion chromatography and the molecular weights of those isoperoxidases were about 95 (Type I), 67 (Type II) and 56 (Type III) kDa, respectively. Only Type I was detected in broccoli florets immediately after harvest, and its activity in non-heat-treated broccoli increased greatly during storage. Both Type II and Type III were present in non-heat-treated broccoli with floret senescence. HT suppressed the enhancement of all of the isoperoxidase activities. Cycloheximide treatment also effectively retarded the increase in Types I, II and III isoperoxidase activities concomitant with the suppression of floret yellowing. The K(m) values corresponding to Chl a of Type II and Type III were lower than Type I, and the V(max)/K(m) values corresponding to Chl a of Type II and Type III were higher than Type I. This suggests that both Types II and III could be closely associated with Chl degradation in broccoli florets and that HT might inhibit floret senescence by suppression of isoperoxidase activities.  相似文献   

15.
16.
A new semi-synthetic way to produce glucoraphanin (2), the bio-precursor of the potential anticarcinogen sulforaphane (3), has been developed. Starting from glucoerucin (1), isolated from ripe seeds of Eruca sativa, glucoraphanin was obtained through chemoselective oxidation. Controlled myrosinase-catalysed hydrolysis of this precursor quantitatively afforded sulforaphane.  相似文献   

17.
Broccoli florets contain low levels of 3-methylsuphinylpropyl and 4-methylsulphinylbutyl glucosinolates. Following tissue disruption, these glucosinolates are hydrolysed to the corresponding isothiocyanates (ITCs), which have been associated with anticarcinogenic activity through a number of physiological mechanisms including the induction of phase II detoxification enzymes and apoptosis. In this paper, we describe the development of ITC-enriched broccoli through the introgression of three small segments of the genome of Brassica villosa, a wild relative of broccoli, each containing a quantitative trait locus (QTL), into a broccoli genetic background, via marker-assisted selection and analysis of glucosinolates in the florets of backcross populations. Epistatic and heterotic effects of these QTLs are described. The ITC-enriched broccoli had 80-times the ability to induce quinone reductase (a standard assay of phase II induction potential) when compared to standard commercial broccoli, due both to an increase in the precursor glucosinolates and a greater conversion of these into ITCs.  相似文献   

18.
Little is known about the direct effect of broccoli sprouts on human health. So we investigated the effect of broccoli sprouts on the induction of various biochemical oxidative stress markers. Twelve healthy subjects (6 males and 6 females) consumed fresh broccoli sprouts (100 g/day) for 1 week for a phase 1 study. Before and after the treatment, biochemical examination was conducted and natural killer cell activity, plasma amino acids, plasma PCOOH (phosphatidylcholine hydroperoxide), the serum coenzyme Q(10), urinary 8-isoprostane, and urinary 8-OHdG (8-hydroxydeoxyguanosine) were measured. With treatment, total cholesterol and LDL cholesterol decreased, and HDL cholesterol increased significantly. Plasma cystine decreased significantly. All subjects showed reduced PCOOH, 8-isoprostane and 8-OHdG, and increased CoQ(10)H(2)/CoQ(10) ratio. Only one week intake of broccoli sprouts improved cholesterol metabolism and decreased oxidative stress markers.  相似文献   

19.
The relationship between sucrose (Suc) and ascorbate (AA) metabolism was investigated in harvested broccoli (Brassica oleracea L. var. italica) florets. Decreases in both Suc and AA content were observed in broccoli florets 48 h after all the leaves were excised, but none were observed when the plants were kept intact or with leaves attached in a room at 20 degrees C. In harvested broccoli plants without leaves and roots, continuous absorption of a 10% (w/v) Suc solution from the cut surface of the stem suppressed the degreening of sepals and the loss of AA content in florets. The expression of the genes related to AA metabolism in chloroplasts and its biosynthesis were up-regulated by Suc feeding in broccoli florets. These data suggest that a decline in Suc leads to considerable damage not only to AA biosynthesis but also to the hydrogen peroxide-scavenging system in chloroplasts. In addition, the cessation of the Suc supply from leaves can be the main factor of AA degradation in harvested broccoli florets.  相似文献   

20.
The objective of this study was to evaluate the potential of the structurally related aliphatic isothiocyanates erucin and sulforaphane to modulate the pulmonary carcinogen-metabolising enzyme systems in rat lung, a target organ of their chemopreventive activity. Precision-cut rat lung slices were prepared and incubated for 24 h with a range of concentrations of either erucin or sulforaphane, up to 50 μM. Neither compound modulated the O-deethylation of ethoxyresorufin whereas they elevated markedly CYP1A1 and, to a lesser extent, CYP1B1 apoprotein levels. Neither compound influenced the O-depentylation of pentoxyresorufin or CYP2B apoprotein levels, but sulforaphane caused a modest increase in CYP3A2 apoprotein levels. Pulmonary quinone reductase activity, monitored using 3-(4,5-dimethylthiazo-2-yl)-2,5-diphenyltetrazolium bromide as substrate, was markedly up-regulated by both compounds and was paralleled by a similar rise in protein levels. Both compounds increased cytosolic glutathione S-transferase activity, measured using 1-chloro-2,4-dinitrobenzene as the accepting substrate; a modest rise was seen in GSTα protein levels, determined immunologically, whereas GSTπ levels were un-affected by the same treatment. Finally, both erucin and sulforaphane increased total glutathione concentration in lung cytosol. It is concluded that these aliphatic isothiocyanates have the potential to antagonise the carcinogenicity of pulmonary carcinogens by stimulating the in situ detoxication of their DNA-binding genotoxic metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号